REFERENCES:

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 2. Moder.J., Phillips. C. and Davis E, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., 3rd Edition, 1985.
- 3. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons, 1986.
- 4. Halpin, D.W., "Financial and Cost Concepts for Construction Management", John Wiley and Sons, New York, 1985.

MUNICIPAL SOLID WASTE MANAGEMENT EN8591

OBJECTIVE:

To make the students conversant with the types, sources, generation, storage, collection, • transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND CHARACTERISTICS

Sources and types of municipal solid wastes- Public health and environmental impacts of improper disposal of solid wastes- sampling and characterization of wastes - factors affecting waste generation rate and characteristics - Elements of integrated solid waste management -Requirements and salient features of Solid waste management rules (2016) --- Role of public and NGO"s- Public Private participation – Elements of Municipal Solid Waste Management Plan.

UNIT II SOURCE REDUCTION, WASTE STORAGE AND RECYCLING

Waste Management Hierarchy - Reduction, Reuse and Recycling - source reduction of waste -On-site storage methods - Effect of storage, materials used for containers - segregation of solid wastes - Public health and economic aspects of open storage - case studies under Indian conditions - Recycling of Plastics and Construction/Demolition wastes.

UNIT III **COLLECTION AND TRANSFER OF WASTES**

Methods of Residential and commercial waste collection - Collection vehicles - Manpower -Collection routes - Analysis of waste collection systems; Transfer stations -location, operation and maintenance; options under Indian conditions - Field problems- solving.

UNIT IV PROCESSING OF WASTES

Objectives of waste processing - Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options - case studies under Indian conditions.

UNIT V WASTE DISPOSAL

Land disposal of solid waste- Sanitary landfills - site selection, design and operation of sanitary landfills - Landfill liners - Management of leachate and landfill gas- Landfill bioreactor - Dumpsite Rehabilitation

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will demonstrate

- understanding of the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management.
- Reduction, reuse and recycling of waste. •

LTPC

3 0 0 3

8

12

8

9

- ability to plan and design systems for storage, collection, transport, processing and disposal of municipal solid waste.
- knowledge on the issues on solid waste management from an integrated and holistic perspective, as well as in the local and international context.
- Design and operation of sanitary landfill.

TEXTBOOKS:

- 1. William A. Worrell, P. Aarne Vesilind (2012) Solid Waste Engineering, Cengage Learning, 2012.
- 2. John Pitchel (2014), Waste Management Practices-Municipal, Hazardous and industrial CRC Press, Taylor and Francis, New York.

REFERENCES:

- 1. CPHEEO (2014), "Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organisation, Government of India, New Delhi.
- 2 George Tchobanoglous and FrankKreith (2002).Handbook of Solid waste management, McGraw Hill, New York.

GE8077	TOTAL QUALITY MANAGEMENT	LT PC
		3003

OBJECTIVE:

• To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

UNIT II TQM PRINCIPLES

Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY MANAGEMENT SYSTEM

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific Standards—AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements—Implementation— Documentation—Internal Audits—Registration--**ENVIRONMENTAL MANAGEMENT SYSTEM:** Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001—Benefits of EMS.

TOTAL: 45 PERIODS

9

9

9

2. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.

REFERENCES:

- 1. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 2. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- 3. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
- 4. Paul Gries, Jennifer Campbell and Jason Montojo, "Practical Programming: An Introduction to Computer Science using Python 3", Second edition, Pragmatic Programmers,LLC,2013.
- 5. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 6. Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private Ltd.,, 2015.

GE8152

ENGINEERING GRAPHICS

L T P C 2 0 4 4

OBJECTIVES:

- To develop in students, graphic skills for communication of concepts, ideas and design of engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.

Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

5+12

5+12

7+12

- -

6+12

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

TOTAL: 90 PERIODS

6+12

OUTCOMES:

On successful completion of this course, the student will be able to

- familiarize with the fundamentals and standards of Engineering graphics
- perform freehand sketching of basic geometrical constructions and multiple views of objects.
- project orthographic projections of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- visualize and to project isometric and perspective sections of simple solids.

TEXT BOOK:

- 1. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 2. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 4. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy And Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

STRENGTH OF MATERIALS I	LTPC
	3003

OBJECTIVES:

CE8301

- To learn the fundamental concepts of Stress. Strain and deformation of solids. •
- To know the mechanism of load transfer in beams, the induced stress resultants and • deformations.
- To understand the effect of torsion on shafts and springs.
- To analyze plane and space trusses •

UNIT I STRESS. STRAIN AND DEFORMATION OF SOLIDS

Simple Stresses and strains – Elastic constants - Relationship between elastic constants – Stress Strain Diagram - Ultimate Stress - Yield Stress - Deformation of axially loaded member -Composite Bars - Thermal Stresses - State of Stress in two dimensions - Stresses on inclined planes – Principal Stresses and Principal Planes – Maximum shear stress - Mohr's circle method.

UNIT II TRANSFER OF LOADS AND STRESSES IN BEAMS

Types of loads, supports, beams - concept of shearing force and bending moment - Relationship between intensity of load, Shear Force and Bending moment - Shear Force and Bending Moment Diagrams for Cantilever, simply supported and overhanging beams with concentrated load. uniformly distributed load, uniformly varying load and concentrated moment. Theory of Simple Bending - Stress Distribution due to bending moment and shearing force - Flitched Beams - Leaf Springs.

UNIT III **DEFLECTION OF BEAMS**

Elastic curve – Governing differential equation - Double integration method - Macaulay's method -Area moment method - conjugate beam method for computation of slope and deflection of determinant beams.

UNIT IV TORSION

Theory of Torsion – Stresses and Deformations in Solid and Hollow Circular Shafts – combined bending moment and torsion of shafts - Power transmitted to shaft - Shaft in series and parallel -Closed and Open Coiled helical springs – springs in series and parallel – Design of buffer springs.

UNIT V ANALYSIS OF TRUSSES

Determinate and indeterminate trusses - Analysis of pin jointed plane determinate trusses by method of joints, method of sections and tension coefficient - Analysis of Space trusses by tension coefficient method.

TOTAL :45 PERIODS

OUTCOMES:

Students will be able to

- Understand the concepts of stress and strain, principal stresses and principal planes. •
- Determine Shear force and bending moment in beams and understand concept of theory of simple bending.
- Calculate the deflection of beams by different methods and selection of method for • determining slope or deflection.
- Apply basic equation of torsion in design of circular shafts and helical springs, . •
- Analyze the pin jointed plane and space trusses

9

9

9

TEXTBOOKS:

- 1. Rajput.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2015.
- 2. Punmia.B.C., Ashok Kumar Jain and Arun Kumar Jain, SMTS -I Strength of materials, Laxmi publications. New Delhi, 2015
- 3. Rattan . S. S, "Strength of Materials", Tata McGraw Hill Education Private Limited, New Delhi. 2012
- 4. Bansal. R.K. "Strength of Materials", Laxmi Publications Pvt. Ltd., New Delhi, 2010

REFERENCES:

- 1. Timoshenko.S.B. and Gere.J.M. "Mechanics of Materials". Van Nos Reinbhold. New Delhi 1999.
- 2. Vazirani.V.N and Ratwani.M.M, "Analysis of Structures", Vol I Khanna Publishers, New Delhi,1995.
- 3. Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol I, Charotar Publishing House, New Delhi 2016.
- 4. Singh, D.K., "Strength of Materials", Ane Books Pvt, Ltd., New Delhi, 2016
- 5. Basavarajaiah, B.S. and Mahadevappa, P., Strength of Materials, Universities Press, Hvderabad, 2010.
- 6. Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.

CE8302

FLUID MECHANICS

OBJECTIVE:

To understand the basic properties of the fluid, fluid kinematics, fluid dynamics and to • analyze and appreciate the complexities involved in solving the fluid flow problems.

UNIT I FLUID PROPERTIES AND FLUID STATICS

Fluid - definition, distinction between solid and fluid - Units and dimensions - Properties of fluids density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapour pressure, capillarity and surface tension - Fluid statics: concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers-forces on planes - centre of pressure buoyancy and floatation.

FLUID KINEMATICS AND DYNAMICS UNIT II

Fluid Kinematics - Classification and types of flow - velocity field and acceleration - continuity equation (one and three dimensional differential forms)- stream line-streak line-path line- stream function - velocity potential function - flow net. Fluid dynamics - equations of motion -Euler's equation along a streamline - Bernoulli's equation - applications - venturi meter, orifice meter and Pitot tube- linear momentum equation and its application to pipe bend.

DIMENSIONAL ANALYSIS AND MODEL STUDIES UNIT III

Fundamental dimensions - dimensional homogeneity - Rayleigh's method and Buckingham Pitheorem - dimensionless parameters - similitudes and model studies - distorted models.

UNIT IV FLOW THROUGH PIPES

Reynold's experiment - laminar flow through circular pipe (Hagen poiseulle's) - hydraulic and energy gradient - flow through pipes - Darcy - Weisbach's equation - pipe roughness -friction factor-Moody's diagram- major and minor losses of flow in pipes - pipes in series and in parallel.

UNIT V **BOUNDARY LAYER**

Boundary layer – definition- boundary layer on a flat plate – laminar and turbulent boundary layerdisplacement, energy and momentum thickness – Momentum integral equation-Boundary layer separation and control - drag on flat plate.

TOTAL: 45 PERIODS

LTPC 3003

9

9

9

9

OUTCOMES:

At the end of the course students will be able to

- Get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
- Understand and solve the problems related to equation of motion.
- Gain knowledge about dimensional and model analysis.
- Learn types of flow and losses of flow in pipes.
- Understand and solve the boundary layer problems.

TEXT BOOKS:

- 1. Modi P.N and Seth "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House New Delhi, 2009.
- 2. Jain.A.K., "Fluid Mechanics" (Including Hydraulic Machines), Khanna Publishers, Twelfth Edition, 2016.
- 3. Subramanya.K " Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Education Private Limited, New Delhi, 2010.
- 4. Rajput.R.K. "Fluid Mechanics", S.Chand and Co, New Delhi, 2008.

REFERENCES:

- 1. Streeter, V.L., and Wylie, E.B., "Fluid Mechanics", McGraw Hill, 2000.
- 2. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 2013.
- 3. White, F.M., "Fluid Mechanics", Tata McGraw Hill, 5th Edition, New Delhi, 2017.
- 4. Mohd. Kaleem Khan, "Fluid Mechanics and Machinery", Oxford University Press, New Delhi, 2015.
- 5. Bansal.R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications Pvt. Ltd., New Delhi, 2013.

CE8351

SURVEYING

LTPC 3 0 0 3

OBJECTIVES :

- To introduce the rudiments of plane surveying and geodetic principles to Civil Engineers.
- To learn the various methods of plane and geodetic surveying to solve the real world Civil Engineering problems.
- To introduce the concepts of Control Surveying
- To introduce the basics of Astronomical Surveying

UNIT I FUNDAMENTALS OF CONVENTIONAL SURVEYING AND LEVELLING 9

Classifications and basic principles of surveying - Equipment and accessories for ranging and chaining - Methods of ranging - Compass - Types of Compass - Basic Principles- Bearing - Types - True Bearing - Magnetic Bearing - Levelling- Principles and theory of Levelling - Datum-- Bench Marks - Temporary and Permanent Adjustments- Methods of Levelling- Booking - Reduction - Sources of errors in Levelling - Curvature and refraction.

UNIT II THEODOLITE AND TACHEOMETRIC SURVEYING

Horizontal and vertical angle measurements - Temporary and permanent adjustments - Heights and distances - Tacheometer - Stadia Constants - Analytic Lens -Tangential and Stadia Tacheometry surveying - Contour – Contouring – Characteristics of contours – Methods of contouring – Tacheometric contouring - Contour gradient – Uses of contour plan and map

UNIT III CONTROL SURVEYING AND ADJUSTMENT

Horizontal and vertical control – Methods – specifications – triangulation- baseline – satellite stations – reduction to centre- trigonometrical levelling – single and reciprocal observations – traversing – Gale's table. - Errors Sources- precautions and corrections – classification of errors –

9

40

true and most probable values - weighed observations - method of equal shifts - principle of least squares - normal equation - correlates- level nets- adjustment of simple triangulation networks.

UNIT IV ADVANCED TOPICS IN SURVEYING

Hydrographic Surveying - Tides - MSL - Sounding methods - Three point problem - Strength of fix - astronomical Surveying - Field observations and determination of Azimuth by altitude and hour angle methods - Astronomical terms and definitions - Motion of sun and stars - Celestial coordinate systems - different time systems - Nautical Almanac - Apparent altitude and corrections - Field observations and determination of time, longitude, latitude and azimuth by altitude and hour angle method

UNIT V **MODERN SURVEYING**

Total Station : Advantages - Fundamental guantities measured - Parts and accessories - working principle - On board calculations - Field procedure - Errors and Good practices in using Total Station GPS Surveying : Different segments - space, control and user segments - satellite configuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment - Hand Held and Geodetic receivers - data processing - Traversing and triangulation.

OUTCOMES:

At the end of the course the student will be able to understand

- The use of various surveying instruments and mapping
- Measuring Horizontal angle and vertical angle using different instruments •
- Methods of Leveling and setting Levels with different instruments •
- Concepts of astronomical surveying and methods to determine time, longitude, latitude and • azimuth
- Concept and principle of modern surveying.

TEXTBOOKS:

- 1. Kanetkar.T.P and Kulkarni.S.V. Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008
- 2. Punmia.B.C., Ashok K.Jain and Arun K Jain , Surveying Vol. I & II, Lakshmi Publications Pvt Ltd. New Delhi. 2005
- 3. James M. Anderson and Edward M. Mikhail, "Surveying, Theory and Practice", 7th Edition, McGraw Hill, 2001.
- 4. Bannister and S. Raymond, "Surveying", 7th Edition, Longman 2004.
- 5. Laurila, S.H. "Electronic Surveying in Practice", John Wiley and Sons Inc, 1993
- 6. Venkatramaiah, Text book of Surveying, University press, New Delhi, 2014

REFERENCES:

- 1. Alfred Leick, "GPS satellite surveying", John Wiley & Sons Inc., 3rd Edition, 2004.
- 2. Guocheng Xu, "GPS Theory, Algorithms and Applications", Springer Berlin, 2003.
- 3. SatheeshGopi, rasathishkumar, N. madhu, "Advanced Surveying, Total Station GPS and Remote Sensing" Pearson education, 2007
- 4. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 5. Arora K.R., "Surveying Vol I & II", Standard Book house, 10th Edition 2008

CE8391

CONSTRUCTION MATERIALS

LTPC 3 0 0 3

OBJECTIVE:

To introduce students to various materials commonly used in civil engineering construction • and their properties.

TOTAL: 45 PERIODS

MODERN MATERIALS

UNIT V Glass - Ceramics - Sealants for joints - Fibre glass reinforced plastic - Clay products -Refractories – Composite materials – Types – Applications of laminar composites – Fibre textiles– Geomembranes and Geotextiles for earth reinforcement.

OUTCOMES:

On completion of this course the students will be able to

- Compare the properties of most common and advanced building materials.
- understand the typical and potential applications of lime, cement and aggregates
- know the production of concrete and also the method of placing and making of concrete • elements.
- understand the applications of timbers and other materials •
- Understand the importance of modern material for construction.

TEXT BOOKS:

- 1. Varghese P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2015.
- 2. Rajput. R.K., "Engineering Materials", S. Chand and Company Ltd., 2008.
- 3. Gambhir.M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 4. Duggal.S.K., "Building Materials", 4th Edition, New Age International, 2008.

REFERENCES:

- 1. Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.
- 2. Gambhir. M.L., & Neha Jamwal., "Building Materials, products, properties and systems", Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
- 3. IS456 2000: Indian Standard specification for plain and reinforced concrete, 2011
- 4. IS4926 2003: Indian Standard specification for ready-mixed concrete, 2012
- 5. IS383 1970: Indian Standard specification for coarse and fine aggregate from natural Sources for concrete, 2011
- 6. IS1542-1992: Indian standard specification for sand for plaster, 2009
- 7. IS 10262-2009: Indian Standard Concrete Mix Proportioning –Guidelines, 2009

UNIT I **STONES – BRICKS – CONCRETE BLOCKS**

Stone as building material - Criteria for selection - Tests on stones - Deterioration and Preservation of stone work - Bricks - Classification - Manufacturing of clay bricks - Tests on bricks - Compressive Strength - Water Absorption - Efflorescence - Bricks for special use -Refractory bricks – Concrete blocks – Lightweight concrete blocks.

LIME – CEMENT – AGGREGATES – MORTAR UNIT II

Lime – Preparation of lime mortar – Cement – Ingredients – Manufacturing process – Types and Grades – Properties of cement and Cement mortar – Hydration – Compressive strength – Tensile strength - Fineness- Soundness and consistency - Setting time - fine aggregates - river sand crushed stone sand - properties - coarse Aggregates - Crushing strength - Impact strength -Flakiness Index – Elongation Index – Abrasion Resistance – Grading

UNIT III CONCRETE

Concrete – Ingredients – Manufacturing Process – Batching plants – mixing – transporting – placing – compaction of concrete –curing and finishing – Ready mix Concrete – Mix specification.

TIMBER AND OTHER MATERIALS UNIT IV

Timber – Market forms – Industrial timber– Plywood – Veneer – Thermocol – Panels of laminates - Steel - Aluminum and Other Metallic Materials - Composition - Aluminium composite panel -Market forms – Mechanical treatment – Paints – Varnishes – Distempers – Bitumens.

9

TOTAL: 45 PERIODS

9

9

q

- Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.
- Apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXTBOOKS :

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.

REFERENCES:

- 1. Brian Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, Asia, New Delhi, 2007.
- 2. Gerald. C. F. and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New Delhi, 2006.
- 3. Mathews, J.H. "Numerical Methods for Mathematics, Science and Engineering", 2nd Edition, Prentice Hall, 1992.
- 4. Sankara Rao. K., "Numerical Methods for Scientists and Engineers", Prentice Hall of India Pvt. Ltd, 3rd Edition, New Delhi, 2007.
- 5. Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th Edition, 2015.

CE8401 CONSTRUCTION TECHNIQUES AND PRACTICES L T P C

OBJECTIVE:

• The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONSTRUCTION TECHNIQUES

Structural systems - Load Bearing Structure - Framed Structure - Load transfer mechanism – floor system - Development of construction techniques - High rise Building Technology - Seismic effect - Environmental impact of materials – responsible sourcing - Eco Building (Green Building) - Material used - Construction methods - Natural Buildings - Passive buildings - Intelligent(Smart) buildings - Meaning - Building automation - Energy efficient buildings for various zones-Case studies of residential, office buildings and other buildings in each zones.

UNIT II CONSTRUCTION PRACTICES

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick — weather and water proof – roof finishes – acoustic and fire protection.

9

9

UNIT III SUB STRUCTURE CONSTRUCTION

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting - driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

UNIT IV SUPER STRUCTURE CONSTRUCTION

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks.

UNIT V CONSTRUCTION EQUIPMENT

Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching, mixing and concreting - Equipment for material handling and erection of structures – types of cranes - Equipment for dredging, trenching, tunneling,

TOTAL: 45 PERIODS

OUTCOMES:

On successful completion of this course, students will be able to:

- know the different construction techniques and structural systems
- Understand various techniques and practices on masonry construction, flooring, and roofing.
- Plan the requirements for substructure construction.
- Know the methods and techniques involved in the construction of various types of super structures
- Select, maintain and operate hand and power tools and equipment used in the building construction sites.

TEXTBOOKS :

- 1. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.
- 2. Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997.
- 3. Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.

REFERENCES:

- 1. Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
- 2. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 2002.
- 3. Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.
- 4. Mahesh Varma, "Construction Equipment and its Planning and Application", Metropolitan Book Company, New Delhi, 1983.

9

TEXTBOOKS:

- 1. Subramanya.K ,"Flow in open channels", Tata McGraw Hill, New Delhi, 2000.
- 2. Modi P.N and Seth.S.M "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House New Delhi, 2009.
- 3. Chandramouli P.N.,"Applied Hydraulic Engineering", Yes Dee Publishing Pvt. Ltd., 2017.

REFERENCES:

- 1. Ven Te Chow, "Open Channel Hydraulics", McGraw Hill, New York, 2009.
- 2. Hanif Chaudhry.M., "Open Channel Flow", Second Edition, Springer, 2007.
- 3. Rajesh Srivastava, "Flow through open channels", Oxford University Press, New Delhi, 2008.
- 4. Jain.A.K., "Fluid Mechanics" (Including Hydraulic Machines), Khanna Publishers, Twelfth Edition, 2016.
- 5. Subramanya.K., " Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Education Private Limited, New Delhi, 2010.

CE8404

CONCRETE TECHNOLOGY

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVE:

• To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS

Cement - Different types - Chemical composition and Properties – Hydration of cement - Tests on cement - IS Specifications - Aggregates – Classification - Mechanical properties and tests as per BIS - Grading requirements – Water - Quality of water for use in concrete.

UNIT II CHEMICAL AND MINERAL ADMIXTURES

Accelerators – Retarders - Plasticizers - Super plasticizers - Water proofers - Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline - Effects on concrete properties.

UNIT III PROPORTIONING OF CONCRETE MIX

Principles of Mix Proportioning - Properties of concrete related to Mix Design - Physical properties of materials required for Mix Design - Design Mix and Nominal Mix - BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE

Workability - Tests for workability of concrete - Segregation and Bleeding - Determination of strength Properties of Hardened concrete - Compressive strength – split tensile strength - Flexural strength - Stress-strain curve for concrete - Modulus of elasticity – durability of concrete – water absorption – permeability – corrosion test – acid resistance.

UNIT V SPECIAL CONCRETES

Light weight concretes - foam concrete- self compacting concrete – vacuum concrete - High strength concrete - Fibre reinforced concrete – Ferrocement - Ready mix concrete – SIFCON - Shotcrete – Polymer concrete - High performance concrete - Geopolymer Concrete

TOTAL: 45 PERIODS

OUTCOMES:

Students will be able to understand

- The various requirements of cement, aggregates and water for making concrete
- The effect of admixtures on properties of concrete
- The concept and procedure of mix design as per IS method
- The properties of concrete at fresh and hardened state
- The importance and application of special concretes.

TEXTBOOKS:

- 1. Gupta.B.L., Amit Gupta, "Concrete Technology", Jain Book Agency, 2010.
- 2. Shetty, M.S, "Concrete Technology", S.Chand and Company Ltd, New Delhi, 2003
- 3. Bhavikatti.S.S, "Concrete Technology", I.K.International Publishing House Pvt. Ltd., New Delhi, 2015
- 4. Santhakumar. A.R., "Concrete Technology", Oxford University Press India, 2006.

REFERENCES:

- 1. Neville, A.M; "Properties of Concrete", Pitman Publishing Limited, London, 1995
- 2. Gambhir, M.L; "Concrete Technology", 3rd Edition, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2007
- 3. IS10262-2009 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998.
- 4. Job Thomas, "Concrete Technology", Cengage Learning India Pvt. Ltd., Delhi, 2015
- 5. Kumar P Mehta., Paulo J M Monterio., "Concrete Microstructure, Properties and Materials", McGraw Hill Education (India) Private Limited, New Delhi, 2016

CE8491

SOIL MECHANICS

L T P C 3 0 0 3

OBJECTIVE:

 To impart knowledge to classify the soil based on index properties and to assess their engineering properties based on the classification. To familiarize the students about the fundamental concepts of compaction, flow through soil, stress transformation, stress distribution, consolidation and shear strength of soils. To impart knowledge of design of both finite and infinite slopes.

UNIT I SOIL CLASSIFICATION AND COMPACTION

History – formation and types of soil – composition - Index properties – clay mineralogy structural arrangement of grains – description – Classification – BIS – US – phase relationship – Compaction – theory – laboratory and field technology – field Compaction method – factors influencing compaction.

UNIT II EFFECTIVE STRESS AND PERMEABILITY

Soil - water – Static pressure in water - Effective stress concepts in soils – Capillary phenomena– – Permeability – Darcy's law – Determination of Permeability – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing permeability of soils – Seepage - Two dimensional flow – Laplace's equation – Introduction to flow nets – Simple problems Sheet pile and wier.

UNIT III STRESS DISTRIBUTION AND SETTLEMENT

Stress distribution in homogeneous and isotropic medium – Boussines of theory – (Point load, Line load and udl) Use of Newmarks influence chart –Components of settlement – Immediate and consolidation settlement – Factors influencing settlement – Terzaghi's one dimensional consolidation theory – Computation of rate of settlement. – \sqrt{t} and log t methods. e-log p relationship consolidation settlement N-C clays – O.C clays – Computation.

9

9

Q

UNIT II

Reading-Read for details-Use of graphic organizers to review and aid comprehension Writing-State reasons and examples to support ideas in writing- Write a paragraph with reasons and examples- Write an opinion paragraph

UNIT III

Reading- Understanding pronoun reference and use of connectors in a passage- speed reading techniques-Writing- Elements of a good essay-Types of essays- descriptive-narrative- issue-based-argumentative-analytical.

UNIT IV

Reading- Genre and Organization of Ideas- Writing- Email writing- visumes – Job applicationproject writing-writing convincing proposals.

UNIT V

Reading- Critical reading and thinking- understanding how the text positions the reader- identify Writing- Statement of Purpose- letter of recommendation- Vision statement

TOTAL: 30 PERIODS

OUTCOMES:

At the end of the course Learners will be able to:

- Write different types of essays.
- Write winning job applications.
- Read and evaluate texts critically.
- Display critical thinking in various professional contexts.

TEXT BOOKS:

- 1. Gramer F. Margot and Colin S. Ward Reading and Writing (Level 3) Oxford University Press: Oxford, 2011
- 2. Debra Daise, CharlNorloff, and Paul Carne Reading and Writing (Level 4) Oxford University Press: Oxford, 2011

REFERENCES

- 1. Davis, Jason and Rhonda Llss.Effective Academic Writing (Level 3) Oxford University Press: Oxford, 2006
- 2. Suresh Kumar.E and et al. Enriching Speaking and Writing Skills. Second Edition. Orient Black swan: Hyderabad, 2012
- 3. Withrow, Jeans and et al. Inspired to Write. Readings and Tasks to develop writing skills. Cambridge University Press: Cambridge, 2004
- 4. Goatly, Andrew. Critical Reading and Writing. Routledge: United States of America, 2000
- 5. Petelin, Roslyn and Marsh Durham. The Professional Writing Guide: Knowing Well and Knowing Why. Business & Professional Publishing: Australia, 2004

CE8501 DESIGN OF REINFORCED CEMENT CONCRETE ELEMENTS L T P C

3 2 0 4

OBJECTIVES:

• To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.

UNIT I INTRODUCTION

Objective of structural design-Steps in RCC Structural Design Process- Type of Loads on Structures and Load combinations- Code of practices and Specifications - Concept of Working Stress Method, Ultimate Load Design and Limit State Design Methods for RCC –Properties of Concrete and Reinforcing Steel - Analysis and Design of Singly reinforced Rectangular beams by working stress method - Limit State philosophy as detailed in IS code - Advantages of Limit State Method over other methods - Analysis and design of singly and doubly reinforced rectangular beams by Limit State Method.

UNIT II DESIGN OF BEAMS

Analysis and design of Flanged beams for – Use of design aids for Flexure - Behaviour of RC members in Shear, Bond and Anchorage - Design requirements as per current code - Behaviour of rectangular RC beams in shear and torsion - Design of RC members for combined Bending, Shear and Torsion.

UNIT III DESIGN OF SLABS AND STAIRCASE

Analysis and design of cantilever, one way simply supported and continuous slabs and supporting beams-Two way slab- Desingn of simply supported and continuous slabs using IS code coefficients- Types of Staircases – Design of dog-legged Staircase.

UNIT IV DESIGN OF COLUMNS

Types of columns –Axially Loaded columns – Design of short Rectangula Square and circular columns –Design of Slender columns- Design for Uniaxial and Biaxial bending using Column Curves

UNIT V DESIGN OF FOOTINGS

Concepts of Proportioning footings and foundations based on soil properties-Design of wall footing – Design of axially and eccentrically loaded Square, Rectangular pad and sloped footings – Design of Combined Rectangular footing for two columns only.

TOTAL: 75 PERIODS

OUTCOMES:

Students will be able to

- Understand the various design methodologies for the design of RC elements.
- Know the analysis and design of flanged beams by limit state method and sign of beams for shear, bond and torsion.
- design the various types of slabs and staircase by limit state method.
- Design columns for axial, uniaxial and biaxial eccentric loadings.
- Design of footing by limit state method.

TEXT BOOKS:

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, 2002.
- 2. Gambhir. M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 3. Subramanian, N., "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
- 4. Krishnaraju.N " Design of Reinforced Concrete Structurres ", CBS Publishers & Distributors Pvt. Ltd., New Delhi.
- 5. Ramachandra, "Limit state Design of Concrete Structures" Standard Book House, New Delhi

9+6

9+6

9+6

9+6

9+6

REFERENCES:

- 1. Jain, A.K., "Limit State Design of RC Structures", Nemchand Publications, Roorkee, 1998
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi. 2002
- 3. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2009
- 4. Punmia. B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2007.
- 5. Bandyopadhyay. J.N., "Design of Concrete Structures"., Prentice Hall of India Pvt. Ltd., New Delhi, 2008.
- 6. IS456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000
- 7. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999
- 8. Shah V L Karve S R., "Limit State Theory and Design of Reinforced Concrete", Structures Publications, Pune, 2013

CE8502

STRUCTURAL ANALYSIS I

OBJECTIVE:

 To introduce the students to basic theory and concepts of classical methods of structural analysis

UNITI STRAIN ENERGY METHOD

Determination of Static and Kinematic Indeterminacies – Analysis of continuous beams, plane frames and indeterminate plane trusses by strain energy method (up to two degree of redundancy).

SLOPE DEFLECTION METHOD UNITII

Slope deflection equations - Equilibrium conditions - Analysis of continuous beams and rigid frames - Rigid frames with inclined members - Support settlements- symmetric frames with symmetric and skew-symmetric loadings.

UNITIII MOMENT DISTRIBUTION METHOD

Stiffness and carry over factors - Distribution and carryover of moments - Analysis of continuous Beams- Plane rigid frames with and without sway - Support settlement - symmetric frames with symmetric and skew-symmetric loadings.

UNITIV FLEXIBLITY METHOD

Primary structures - Compatibility conditions - Formation flexibility matrices - Analysis of indeterminate pin- jointed plane frames, continuous beams and rigid jointed plane frames by direct flexibility approach.

STIFFNESS METHOD UNITV

Restrained structure – Formation of stiffness matrices - equilibrium condition - Analysis of Continuous Beams, Pin-jointed plane frames and rigid frames by direct stiffness method.

TOTAL: 45 PERIODS

3 0 0 3

LT PC

9

9

9

Q

OUTCOMES:

Students will be able to

- Analyze continuous beams, pin-jointed indeterminate plane frames and rigid plane frames by strain energy method
- Analyse the continuous beams and rigid frames by slope defection method.
- Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.
- Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using matrix flexibility method.
- Understand the concept of matrix stiffness method and analysis of continuous beams, pin jointed trusses and rigid plane frames.

TEXTBOOKS:

- 1. Bhavikatti, S.S,Structural Analysis,Vol.1,& 2, Vikas Publishing House Pvt.Ltd.,NewDelhi-4, 2014.
- 2. Bhavikatti, S.S, Matrix Method of Structural Analysis, I. K. International Publishing House Pvt.Ltd., New Delhi-4, 2014.
- 3. Vazrani.V.N And Ratwani, M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.
- 4. Pandit G.S.andGupta S.P., Structural Analysis–AMatrix Approach, Tata McGraw Hill Publishing Company Ltd., 2006

REFERENCES:

- 1. Punmia. B.C, Ashok Kumar Jain & Arun Kumar Jain, Theory of structures, Laxmi Publications, New Delhi, 2004.
- 2. William Weaver, Jrand James M.Gere, Matrix analysis of framed structures, CBS Publishers & Distributors, Delhi,1995
- 3. Hibbeler, R.C., Structural Analysis, VII Edition, Prentice Hall, 2012.
- 4. Reddy.C.S, "Basic Structural Analysis", Tata McGraw Hill Publishing Company, 2005.
- 5. Rajasekaran. S, & G. Sankarasubramanian., "Computational Structural Mechanics", PHI Learning Pvt. Ltd, 2015
- 6. Negi L.S.and Jangid R.S., Structural Analysis, Tata McGraw Hill Publishing Co.Ltd.2004.

EN8491

WATER SUPPLY ENGINEERING

LTPC 3 0 0 3

OBJECTIVE:

• To equip the students with the principles and design of water treatment units and distribution system.

UNIT I SOURCES OF WATER

Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – Impounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.

UNIT II CONVEYANCE FROM THE SOURCE

Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials – Hydraulics of flow in pipes – Transmission main design – Laying, jointing and testing of pipes – appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.

9

UNIT III WATER TREATMENT

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation –Clarifloccuator-Plate and tube settlers - Pulsator clarifier - sand filters - Disinfection - Residue Management –Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

Water softening – Desalination- R.O. Plant – demineralization – Adsorption - Ion exchange– Membrane Systems – RO Reject Management - Iron and Manganese removal - Defluoridation -Construction and Operation & Maintenance aspects – Recent advances - MBR process

UNIT V WATER DISTRIBUTION AND SUPPLY

Requirements of water distribution – Components – Selection of pipe material – Service reservoirs – Functions – Network design – Economics – Analysis of distribution networks -Computer applications – Appurtenances – Leak detection.

Principles of design of water supply in buildings – House service connection – Fixtures and fittings, systems of plumbing and types of plumbing.

OUTCOMES:

The students completing the course will have

- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- the knowledge in various unit operations and processes in water treatment
- an ability to design the various functional units in water treatment
- an understanding of water quality criteria and standards, and their relation to public health
- the ability to design and evaluate water supply project alternatives on basis of chosen criteria.

TEXTBOOKS:

- 1. Garg, S.K. Environmental Engineering, Vol.IKhanna Publishers, New Delhi, 2010.
- 2. Modi, P.N., Water Supply Engineering, Vol.I Standard Book House, New Delhi, 2010.
- Punmia, B.C., Ashok Jain and Arun Jain, Water Supply Engineering, Laxmi Publications (P) Ltd., New Delhi, 2014.

REFERENCES:

- 1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- 2. Syed R. Qasim and Edward M. Motley Guang Zhu, Water Works Engineering Planning, Design and Operation, Prentice Hall of India Learning Private Limited, New Delhi, 2009.

CE8591

FOUNDATION ENGINEERING

LT PC 3 00 3

OBJECTIVE:

• To impart knowledge to plan and execute a detail site investigation programme, to select geotechnical design parameters and type of foundations. Also to familiarize the students for the geotechnical design of different type of foundations and retaining walls.

9

TOTAL: 45 PERIODS

9

- (ii). Block Level/ By squares of size at least 100 Meter x 100 Meter atleat 20 Meter interval
- (III). L.S & C.S Road and canal alignment for a Length of not less than 1 Kilo Meter atleast L.S at Every 30M and C.S at every 90 M
- 3. Offset of Buildings and Plotting the Location
- 4. Sun observation to determine azimuth (guidelines to be given to the students)
- 5. Use of GPS to determine latitude and longitude and locate the survey camp location
- 6. Traversing using GPS
- 7. Curve setting by deflection angle

Apart from above students may be given survey exercises in other area also based on site condition to give good exposure on survey.

CE8601 **DESIGN OF STEEL STRUCTURAL ELEMENTS** LTPC 3 2 0 4

OBJECTIVE:

To introduce the students to limit state design of structural steel members subjected to • compressive, tensile and bending loads, including connections. Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 -2007) of practice for working stress and Limit state Method.

UNIT I INTRODUCTION AND ALLOWABLE STRESS DESIGN

Structural steel types - Mechanical Properties of structural steel- Indian structural steel products-Steps involved in the Deign Process -Steel Structural systems and their Elements- -Type of Loads on Structures and Load combinations- Code of practices, Loading standards and Specifications -Concept of Allowable Stress Method, and Limit State Design Methods for Steel structures-Relative advantages and Limitations-Strengths and Serviceability Limit states.

Allowable stresses as per IS 800 section 11 -Concepts of Allowable stress design for bending and Shear – Check for Elastic deflection-Calculation of moment carrying capacity – Design of Laterally supported Solid Hot Rolled section beams-Allowable stress deign of Angle Tension and Compression Members and estimation of axial load carrying capacity.

UNIT II **CONNECTIONS IN STEEL STRUCTURES**

Type of Fasteners- Bolts Pins and welds- Types of simple bolted and welded connections Relative advantages and Limitations-Modes of failure-the concept of Shear lag-efficiency of joints- Axially loaded bolted connections for Plates and Angle Members using bearing type bolts - Prying forces and Hanger connection- Design of Slip critical connections with High strength Friction Grip bolts.-Design of joints for combined shear and Tension- Eccentrically Loaded Bolted Bracket Connections- Welds-symbols and specifications- Effective area of welds-Fillet and but Welded connections-Axially Loaded connections for Plate and angle truss members and Eccentrically Loaded bracket connections.

TENSION MEMBERS UNIT III

Tension Members - Types of Tension members and sections –Behaviour of Tension Membersmodes of failure-Slenderness ratio- Net area - Net effective sections for Plates ,Angles and Tee in tension -Concepts of Shear Lag- Design of plate and angle tension members-design of built up tension Members-Connections in tension members – Use of lug angles – Design of tension splice.

UNIT IV **COMPRESSION MEMBERS**

Types of compression members and sections-Behaviour and types of failures-Short and slender columns- Current code provisions for compression members- Effective Length, Slenderness ratio -Column formula and column curves- Design of single section and compound Angles-Axially Loaded solid section Columns- Design of Built up Laced and Battened type columns - Design of column bases - Plate and Gusseted bases for Axially loaded colums- Splices for colums.

9+6

9+6

9+6

9+6

UNIT V DESIGN OF FLEXURAL MEMBERS

Types of steel Beam sections- Behaviour of Beams in flexure- Codal Provisions – Classification of cross sections- Flexural Strength and Lateral stability of Beams –Shear Strength-Web Buckling, Crippling and defection of Beams- Design of laterally supported Beams- Design of solid rolled section Beams- Design of Plated beams with cover plates - Design Strength of Laterally unsupported Beams – Design of laterally unsupported rolled section Beams- Purlin in Roof Trusses-Design of Channel and I section Purlins.

TOTAL: 75 PERIODS

OUTCOMES:

Students will be able to

- Understand the concepts of various design philosophies
- Design common bolted and welded connections for steel structures
- Design tension members and understand the effect of shear lag.
- Understand the design concept of axially loaded columns and column base connections.
- Understand specific problems related to the design of laterally restrained and unrestrained steel beams.

TEXTBOOKS:

- 1. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.
- 2. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
- 3. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

REFERENCES:

- 1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002
- 2. Sai Ram. K.S. "Design of Steel Structures " Dorling Kindersley (India) Pvt. Ltd., New Delhi, 2nd Edition, 2015, www.pearsoned.co.in/kssairam
- 3. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013
- 4. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800– 2007, IK International Publishing House Pvt. Ltd., 2009
- 5. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007, Structures Publications, 2009.
- 6. IS800 :2007, General Construction in Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007
- 7. SP 6(1) Hand book on structural Steel Sections

CE8602

STRUCTURAL ANALYSIS II

L T P C 3 0 0 3

OBJECTIVES :

- To learn the method of drawing influence lines and its uses in various applications like beams and plane trusses.
- To analyse the arches, suspension bridges and space trusses.
- Also to learn Plastic analysis of beams and rigid frames.

CABLES AND SUSPENSION BRIDGES

Plastic theory - Statically indeterminate structures - Plastic moment of resistance - Plastic modulus - Shape factor - Load factor - Plastic hinge and mechanism - collapse load - Static and kinematic methods - Upper and lower bound theorems - Plastic analysis of indeterminate beams and frames.

OUTCOMES:

Students will be able to

- Draw influence lines for statically determinate structures and calculate critical stress • resultants.
- Understand Muller Breslau principle and draw the influence lines for statically • indeterminate beams.
- Analyse of three hinged, two hinged and fixed arches. •
- Analyse the suspension bridges with stiffening girders •
- Understand the concept of Plastic analysis and the method of analyzing beams and rigid • frames.

TEXTBOOKS:

- 1. Bhavikatti, S.S, Structural Analysis, Vol.1 & 2, Vikas Publishing House Pvt.Ltd., NewDelhi-4, 2014.
- 2. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, Theory of structures, Laxmi, Publications,2004.
- 3. Vazrani.V.N And Ratwani, M.M, Analysis of Structures, Vol.II, Khanna Publishers, 2015.

REFERENCES:

- 1. Negi.L.S and Jangid R.S., Structural Analysis, Tata McGraw-Hill Publishers, 2004.
- 2. Reddy C.S., Basic Structural Analysis, Tata McGraw Hill Publishing Co.Ltd.2002.
- 3. Gambhir.M.L., Fundamentals of Structural Mechanics and Analysis, PHIL earning Pvt. Ltd.,2011.
- 4. Prakash Rao D.S., Structural Analysis, Universities Press, 1996.

INFLUENCE LINES FOR INDETERMINATE BEAMS

Muller Breslau's principle- Influence line for Shearing force, Bending Moment and support reaction components of propped cantilever, continuous beams (Redundancy restricted to one), and fixed beams.

bending moment - Calculation of critical stress resultants due to concentrated and distributed moving loads - absolute maximum bending moment - influence lines for member forces in pin

UNIT III ARCHES

jointed plane frames.

UNITI

UNIT IV

UNITV

Arches - Types of arches – Analysis of three hinged, two hinged and fixed arches - Parabolic and circular arches - Settlement and temperature effects.

Equilibrium of cable - length of cable - anchorage of suspension cables - stiffening girders cables with three hinged stiffening girders – Influence lines for three hinged stiffening girders.

PLASTIC ANALYSIS

TOTAL:45 PERIODS

9

9

9

TEXTBOOKS:

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.

REFERENCES:

- 1. Indian Road Congress (IRC), Guidelines for the Design of Flexible Pavements, (Third Revision), IRC: 37-2012
- 2. Indian Road Congress (IRC), Guidelines for the Design of Plain Jointed Rigid Pavements for Highways, (Third Revision), IRC: 58-2012
- 3. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012
- 4. Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA, 2011
- 5. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 6. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 7. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford, 2006
- 8. IRC-37–2012, The Indian roads Congress, Guidelines for the Design of Flexible Pavements, New Delhi
- 9. IRC 58-2012. The Indian Road Congress, Guideline for the Design of Rigid Pavements for Highways, New Delhi

EN8592

WASTEWATER ENGINEERING

LTPC 3 0 0 3

OBJECTIVE:

• The objectives of this course is to help students develop the ability to apply basic understanding of physical, chemical, and biological phenomena for successful design, operation and maintenance of sewage treatment plants.

UNIT I PLANNING AND DESIGN OF SEWERAGE SYSTEM

Characteristics and composition of sewage - population equivalent -Sanitary sewage flow estimation – Sewer materials – Hydraulics of flow in sanitary sewers – Sewer design – Storm drainage-Storm runoff estimation – sewer appurtenances – corrosion in sewers – prevention and control – sewage pumping-drainage in buildings-plumbing systems for drainage - Rain Water ting.

UNIT II PRIMARY TREATMENT OF SEWAGE

Objectives – Unit Operations and Processes – Selection of treatment processes – Onsite sanitation - Septic tank- Grey water harvesting – Primary treatment – Principles, functions and design of sewage treatment units - screens - grit chamber-primary sedimentation tanks – Construction, Operation and Maintenance aspects.

9

UNIT III SECONDARY TREATMENT OF SEWAGE

Objectives – Selection of Treatment Methods – Principles, Functions, - Activated Sludge Process and Extended aeration systems -Trickling filters– Sequencing Batch Reactor(SBR) – Membrane Bioreactor - UASB – Waste Stabilization Ponds – - Other treatment methods -Reclamation and Reuse of sewage - Recent Advances in Sewage Treatment – Construction, Operation and Maintenance aspects.

UNIT IV DISPOSAL OF SEWAGE

Standards for– Disposal - Methods – dilution – Mass balance principle - Self purification of river-Oxygen sag curve – deoxygenation and reaeration - Streeter–Phelps model - Land disposal – Sewage farming – sodium hazards - Soil dispersion system.

UNIT V SLUDGE TREATMENT AND DISPOSAL

Objectives - Sludge characterization – Thickening - Design of gravity thickener- Sludge digestion – Standard rate and High rate digester design- Biogas recovery – Sludge Conditioning and Dewatering – Sludge drying beds- ultimate residue disposal – recent advances.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- An ability to estimate sewage generation and design sewer system including sewage pumping stations
- The required understanding on the characteristics and composition of sewage, selfpurification of streams
- An ability to perform basic design of the unit operations and processes that are used in sewage treatment
- Understand the standard methods for disposal of sewage.
- Gain knowledge on sludge treatment and disposal.

TEXTBOOKS:

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3, Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

REFERENCES:

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering–Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2010.
- 3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C., 2010
- 4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006.

9

9

- 4. Peary, H.S., ROWE, D.R., Tchobanoglous, G., "Environmental Engineering", McGraw-HillBook Co., New Delhi, 1995.
- 5. Metcalf and Eddy, "Wastewater Engineering, Treatment and Reuse", Tata McGraw-Hill, New Delhi, 2010.
- 6. Qasim.S.R., Motlev, E.M and Zhu.G. "Water works Engineering Planning, Design and Operation", Prentice Hall, New Delhi, 2009.
- 7. Qasim, S. R. "Wastewater Treatment Plants, Planning, Design & Operation". CRC Press, New York, 2010

CE8701 **ESTIMATION, COSTING AND VALUATION ENGINEERING** LTPC 3 0 0 3

OBJECTIVE:

The students will acquire knowledge in estimation, tender practices, contract procedures, • and valuation and will be able to prepare estimates, call for tenders and execute works.

QUANTITY ESTIMATION UNIT I

Philosophy – Purpose – Methods of estimation – Types of estimates – Approximate estimates – Detailed estimate - Estimation of quantities for buildings, bituminous and cement concrete roads, septic tank, soak pit, retaining walls - culverts (additional practice in class room using computer softwares)

RATE ANALYSIS AND COSTING UNIT II

Standard Data – Observed Data – Schedule of rates – Market rates – Standard Data for Man Hours and Machineries for common civil works – Rate Analysis for all Building works, canals, and Roads- Cost Estimates (additional practice in class room using Computer softwares) -(Analysis of rates for the item of work asked, the data regarding labour, rates of material and rates of labour to be given in the Examination Question Paper)

SPECIFICATIONS, REPORTS AND TENDERS UNIT III

Specifications - Detailed and general specifications - Constructions - Sources - Types of specifications - Principles for report preparation - report on estimate of residential building -Culvert - Roads - TTT Act 2000 - Tender notices - types - tender procedures - Drafting model tenders, E-tendering-Digital signature certificates- Encrypting -Decrypting – Reverse auctions.

UNIT IV CONTRACTS

Contract – Types of contracts – Formation of contract – Contract conditions – Contract for labour, material, design, construction - Drafting of contract documents based on IBRD / MORTH Standard bidding documents – Construction contracts – Contract problems – Arbitration and legal requirements.

UNIT V VALUATION

Definitions – Various types of valuations – Valuation methods - Necessity – Capitalised value – Depreciation - Escalation - Valuation of land - Buildings - Calculation of Standard rent -Mortgage – Lease

TOTAL: 45 PERIODS

OUTCOMES:

The student will be able to

- Estimate the quantities for buildings,
- Rate Analysis for all Building works, canals, and Roads and Cost Estimate. •
- Understand types of specifications, principles for report preparation, tender notices types.
- Gain knowledge on types of contracts •
- Evaluate valuation for building and land. •

9

9

9

q

TEXTBOOKS:

- 1. B.N Dutta 'Estimating and Costing in Civil Engineering', UBS Publishers & Distributors (P) Ltd, 2010.
- 2. B.S.Patil, 'Civil Engineering Contracts and Estimates', University Press. 2006
- 3. D.N. Baneriee, 'Principles and Practices of Valuation', V Edition, Eastern Law House, 1998

REFERENCES:

- 1. Hand Book of Consolidated Data 8/2000, Vol.1, TNPWD
- 2. Tamil Nadu Transparencies in Tenders Act, 1998
- 3. Arbitration and Conciliation Act. 1996
- 4. Standard Bid Evaluation Form, Procurement of Good or Works, The World Bank, April 1996
- 5. Standard Data Book for Analysis and Rates, IRC, New Delhi, 2003

RAILWAYS, AIRPORTS, DOCKS AND HARBOUR ENGINEERING LTPC CE8702 3 0 0 3

OBJECTIVE:

 To introduce the students about Railways planning, design, construction and maintenance and planning design principles of airport and harbour

UNIT I **RAILWAY PLANNING AND CONSTRUCTION**

Elements of permanent way - Rails, Sleepers, Ballast, rail fixtures and fastenings, Selection of gauges - Track Stress, coning of wheels, creep in rails, defects in rails – Route alignment surveys, conventional and modern methods--Geometric design of railway, gradient, super elevation, widening of gauge on curves- Level Crossings. .

UNIT II **RAILWAY CONSTRUCTION AND MAINTENANCE**

Earthwork – Stabilization of track on poor soil - Track drainage – Calculation of Materials required for track laying - Construction and maintenance of tracks - Railway Station and yards and passenger amenities-Signalling

UNIT III AIRPORT PLANNING

Air transport characteristics - airport classification - ICAO - airport planning: Site selection typical Airport Layouts, Case Studies, parking and Circulation Area

UNIT IV **AIRPORT DESIGN**

Runway Design: Orientation, Wind Rose Diagram, Problems on basic and Actual Length, Geometric Design - Elements of Taxiway Design - Airport Zones - Passenger Facilities and Services – Runway and Taxiway Markings.

HARBOUR ENGINEERING UNIT V

Definition of Basic Terms: Harbour, Port, Satellite Port, Docks, Waves and Tides - Planning and Design of Harbours: Harbour Layout and Terminal Facilities - Coastal Structures: Piers, Break waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage - Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works – Coastal Regulation Zone, 2011

TOTAL: 45 PERIODS

10

7

10

10

OUTCOMES:

Students who successfully complete this course will be able to:

- Understand the methods of route alignment and design elements in Railway Planning and Constructions.
- Understand the Construction techniques and Maintenance of Track laving and Railway • stations.
- Gain an insight on the planning and site selection of Airport Planning and design.
- Analyze and design the elements for orientation of runways and passenger facility systems.
- Understand the various features in Harbours and Ports, their construction, coastal protection works and coastal Regulations to be adopted.

TEXTBOOKS:

- 1. Subramanian K.P., Highways, Railways, Airport and Harbour Engineering, V Scitech Publications (India), Chennai, 2010
- 2. Saxena Subhash, C.and Satyapal Arora, A Course in Railway Engineering, Dhanapat Rai and Sons. Delhi. 1998
- 3. Khanna.S.K. Arora.M.G and Jain.S.S. Airport Planning and Design, Nemachand and Bros, Roorkee. 1994

REFERENCES:

- 1. Venkatramaiah. C., Transportation Engineering-Vol.2 Railways, Airports, Docks and Harbours, Bridges and Tunnels., Universities Press (India) Private Limited, Hyderabad, 2015
- 2. Mundrey J S, Railway Track Engineering, McGraw Hill Education (India) Private Ltd, New Delhi, 2013

CE8703

STRUCTURAL DESIGN AND DRAWING

LTPC 3 0 2 4

OBJECTIVE:

This course aims at providing students with a solid background on the principles of • structural engineering design. Students will be acquire the knowledge of liquid retaining structures, bridges components, retaining wall and industrial structures.

UNIT I **RETAINING WALLS**

Reinforced concrete Cantilever and Counter fort Retaining Walls-Horizontal Backfill with Surcharge–Design of Shear Key-Design and Drawing.

UNIT II **FLAT SLAB and BRIDGES**

Design of Flat Slabs with and without drops by Direct Design Method of IS code- Design and Drawing - IRC Specifications and Loading - RC Solid Slab Bridge - Steel Foot-over Bridge-Design and Drawing.

UNIT III LIQUID STORAGE STRUCTURES

RCC Water Tanks - On ground, Elevated Circular, underground Rectangular Tanks-Hemispherical Bottomed Steel Water Tank -- Design and Drawing

UNIT IV **INDUSTRIAL STRUCTURES**

Structural steel Framing - Steel Roof Trusses - Roofing Elements - Beam columns - Codal provisions - Design and Drawing.

9+6

9+6

9+6

9+6

UNIT V GIRDERS AND CONNECTIONS

Plate Girders – Behaviour of Components-Deign of Welded Plate Girder-Design of Industrial Gantry Girders – Design of Eccentric Shear and Moment Resisting connections.

TOTAL: 75 PERIODS

Design and Drawing Exercises for practical component

Part A - RCC Structures

- 1. Rectangular Column and Footing
- 2. Combined footing with Two columns
- 3. RCC one way &Two way Slab and beam system
- 4. Cantilever Retaining wall
- 5. RCC T beam bridge deck
- 6. Underground Rectangular Water Tank
- 7. Elevated circular water Tank

Part B- Steel Structures

- 1. Built up column, column base and Foundation
- 2. Simple Steel Roof Trusses
- 3. Industrial building Elements
- 4. Plate Girder (welded)
- 5. Framed Connections and Detailing
- 6. Gantry girder
- 7. Steel water Tank

STRUCTURAL DESIGN AND DRAWING	Theory Examination		Practicals	
	Question paper Pattern	Marks to awarded	Question paper Pattern	Marks to awarded
This paper is a theory cum practical course weightage for theory 80% and for practical 20%	Five Either/Or type questions 5 x20 = 100 marks : covering all the five units Total Duration of Examination will be 3 hours Each Question include Design - 12 Marks Free hand Drawing (Not to scale) - 8 marks	Theoretical component Marks will carry 80% weightage. End Semester Examination will be conducted by COE	2 Questions, one from Part A - RCC Structures & one from Part B- Steel Structures	Practical component Marks will carry 20% weightage. Practical Examination will be conducted by the respective institution as internal mode.

OUTCOMES:

At the end of the course the student will be able to

- Design and draw reinforced concrete Cantilever and Counterfort Retaining Walls
- Design and draw flat slab as per code provisions
- Design and draw reinforced concrete and steel bridges
- Design and draw reinforced concrete and steel water tanks
- Design and detail the various steel trusses and cantry girders