HS8151

L T P C 4 0 0 4

OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS 12

Reading- short comprehension passages, practice in skimming-scanning and predicting- **Writing**completing sentences- - developing hints. **Listening**- short texts- short formal and informal conversations. **Speaking**- introducing oneself - exchanging personal information- **Language development**- Wh- Questions- asking and answering-yes or no questions- parts of speech. **Vocabulary development-**- prefixes- suffixes- articles.- count/ uncount nouns.

UNIT II GENERAL READING AND FREE WRITING

Reading - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register- **Writing** – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –**Listening**- telephonic conversations. **Speaking** – sharing information of a personal kind—greeting – taking leave- **Language development** – prepositions, conjunctions **Vocabulary development**- guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT

Reading- short texts and longer passages (close reading) **Writing**- understanding text structure- use of reference words and discourse markers-coherence-jumbled sentences **Listening** – listening to longer texts and filling up the table- product description- narratives from different sources. **Speaking**- asking about routine actions and expressing opinions. **Language development**- degrees of comparison- pronouns- direct vs indirect questions- **Vocabulary development** – single word substitutes- adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT

Reading- comprehension-reading longer texts- reading different types of texts- magazines **Writing**letter writing, informal or personal letters-e-mails-conventions of personal email- **Listening**- listening to dialogues or conversations and completing exercises based on them. **Speaking-** speaking about oneself- speaking about one's friend- **Language development-** Tenses- simple present-simple pastpresent continuous and past continuous- **Vocabulary development-** synonyms-antonyms- phrasal verbs

12

12

UNIT V EXTENDED WRITING

Reading- longer texts- close reading –**Writing**- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-**Listening** – listening to talks-conversations- **Speaking** – participating in conversations- short group conversations-**Language development**-modal verbs- present/ past perfect tense - **Vocabulary development**-collocations-fixed and semi-fixed expressions

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course, learners will be able to:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English
- Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

- **1.** Board of Editors. **Using English** A Coursebook for Undergarduate Engineers and Technologists. Orient BlackSwan Limited, Hyderabad: 2015
- 2. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCES

- **1** Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.
- 2 Comfort, Jeremy, et al. Speaking Effectively : Developing Speaking Skillsfor BusinessEnglish. Cambridge University Press, Cambridge: Reprint 2011
- **3** Dutt P. Kiranmai and RajeevanGeeta. **Basic Communication Skills,** Foundation Books: 2013
- 4 Means,L. Thomas and Elaine Langlois. **English & Communication For Colleges.** CengageLearning ,USA: 2007
- 5 Redston, Chris & Gillies Cunningham Face2Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005

MA8151

ENGINEERING MATHEMATICS - I

С L Т Ρ Ω 0

OBJECTIVES:

The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules -Maxima and Minima of functions of one variable.

FUNCTIONS OF SEVERAL VARIABLES UNIT II

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables - Maxima and minima of functions of two variables - Lagrange's method of undetermined multipliers.

UNIT III INTEGRAL CALCULUS

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves - Triple integrals - Volume of solids - Change of variables in double and triple integrals.

UNIT V **DIFFERENTIAL EQUATIONS**

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Homogenous equation of Euler's and Legendre's type - System of simultaneous linear differential equations with constant coefficients - Method of undetermined coefficients.

TOTAL : 60 PERIODS

OUTCOMES:

After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.

12

12

12

12

CY8151

ENGINEERING CHEMISTRY

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA – numerical problems – boiler troubles (scale and sludge) – treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) external treatment – Ion exchange process, zeolite process – desalination of brackish water – Reverse Osmosis.

UNIT II SURFACE CHEMISTRY AND CATALYSIS

Adsorption: Types of adsorption – adsorption of gases on solids – adsorption of solute from solutions – adsorption isotherms – Freundlich's adsorption isotherm – Langmuir's adsorption isotherm – contact theory – kinetics of surface reactions, unimolecular reactions, Langmuir - applications of adsorption on pollution abatement.

Catalysis: Catalyst – types of catalysis – criteria – autocatalysis – catalytic poisoning and catalytic promoters - acid base catalysis – applications (catalytic convertor) – enzyme catalysis – Michaelis – Menten equation.

UNIT III ALLOYS AND PHASE RULE

Alloys: Introduction- Definition- properties of alloys- significance of alloying, functions and effect of alloying elements- Nichrome and stainless steel (18/8) – heat treatment of steel. Phase rule: Introduction, definition of terms with examples, one component system -water system - reduced phase rule - thermal analysis and cooling curves - two component systems - lead-silver system - Pattinson process.

UNIT IV FUELS AND COMBUSTION

Fuels: Introduction - classification of fuels - coal - analysis of coal (proximate and ultimate) - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol and biodiesel. Combustion of fuels: Introduction - calorific value - higher and lower calorific values- theoretical calculation of calorific value - ignition temperature - spontaneous ignition temperature - explosive range - flue gas analysis (ORSAT Method).

UNIT V ENERGY SOURCES AND STORAGE DEVICES

Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of

9

9

9

9

batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H_2 - O_2 fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:

 The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. S. S. Dara and S. S. Umare, "A Textbook of Engineering Chemistry", S. Chand & Company LTD, New Delhi, 2015
- 2. P. C. Jain and Monika Jain, "Engineering Chemistry" Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India PVT, LTD, New Delhi, 2013.

REFERENCES:

- 1. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 2. Prasanta Rath, "Engineering Chemistry", Cengage Learning India PVT, LTD, Delhi, 2015.
- 3. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, 2015.

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P C

COURSE OBJECTIVES:

- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures --- lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

9

3003

GROUP DISCUSSION AND JOB APPLICATIONS

Listening- TED/Ink talks; Speaking -participating in a group discussion -Reading- reading and understanding technical articles Writing – Writing reports- minutes of a meeting- accident and survey-Vocabulary Development- verbal analogies Language Development- reported speech

TOTAL: 60 PERIODS

29

Listening- Listening to classroom lectures/ talkls on engineering/technology -Speaking - introduction **Reading** – longer texts both general and technical, practice in speed to technical presentationsreading; Writing-Describing a process, use of sequence words- Vocabulary Developmentsequence words- Misspelled words. Language Development- embedded sentences

UNIT IV REPORT WRITING 12 Listening - Listening to documentaries and making notes. Speaking - mechanics of presentations-**Reading** – reading for detailed comprehension- Writing- email etiquette- job application – cover letter -Résumé preparation(via email and hard copy)- analytical essays and issue based essays--Vocabulary Development- finding suitable synonyms-paraphrasing-. Language Development-

describing a process-Reading – reading longer technical texts- identifying the various transitions in a text- paragraphing- Writing- interpreting cgarts, graphs- Vocabulary Development-vocabularyused in formal letters/emails and reports Language Development- impersonal passive voice, numerical

Language Development - subject verb agreement - compound words.

TECHNICAL WRITING AND GRAMMAR

READING AND STUDY SKILLS

INTRODUCTION TECHNICAL ENGLISH 12

UNIT I Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises- Speaking –Asking for and giving directions- Reading – reading short technical texts from journals- newsapapers- Writing- purpose statements - extended definitions - issue- writing

Develop their speaking skills to make technical presentations, participate in group discussions. ٠ Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

OBJECTIVES: The Course prepares second semester engineering and Technology students to:

Foster their ability to write convincing job applications and effective reports.

Develop strategies and skills to enhance their ability to read and comprehend engineering and

TECHNICAL ENGLISH

HS8251

UNIT II

adjectives.

clauses- if conditionals.

UNIT III

UNIT V

technology texts.

С L Т Ρ

Δ 0 0 4

12 Listening- Listening to longer technical talks and completing exercises based on them-Speaking -

12

12

instructions – checklists-recommendations-Vocabulary Development- technical vocabulary

OUTCOMES: At the end of the course learners will be able to:

- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

- **1.** Board of editors. **Fluency in English A Course book for Engineering and Technology.** Orient Blackswan, Hyderabad: 2016
- 2. Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi, 2016.

REFERENCES

- 1. Booth-L. Diana, **Project Work**, Oxford University Press, Oxford: 2014.
- 2. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007
- 3. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015
- **4.** Means, L. Thomas and Elaine Langlois, **English & Communication For Colleges.** Cengage Learning, USA: 2007
- 5. Raman, Meenakshi and Sharma, Sangeetha- **Technical Communication Principles and Practice.**Oxford University Press: New Delhi,2014.

Students can be asked to read Tagore, Chetan Bhagat and for suplementary reading.

MA8251

ENGINEERING MATHEMATICS – II L T P 4 0 0

OBJECTIVES :

• This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II VECTOR CALCULUS

Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved

12

12

С

Δ

surface - Volume integral - Green's, Gauss divergence and Stoke's theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS

Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal

mapping – Mapping by functions W = z + c, $cz, \frac{1}{z}, z^2$ - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Line integral - Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Singularities – Residues – Residue theorem – Application of residue theorem for evaluation of real integrals – Use of circular contour and semicircular contour.

UNIT V LAPLACE TRANSFORMS

Existence conditions – Transforms of elementary functions – Transform of unit step function and unit impulse function – Basic properties – Shifting theorems -Transforms of derivatives and integrals – Initial and final value theorems – Inverse transforms – Convolution theorem – Transform of periodic functions – Application to solution of linear second order ordinary differential equations with constant coefficients.

TOTAL: 60 PERIODS

OUTCOMES :

After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.

REFERENCES:

- 1. Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics ", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O'Neil, P.V. "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, New Delhi, 2007.

12

12

5. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam,2000.

CIRCUIT THEORY

EE8251

OBJECTIVES:

- To introduce electric circuits and its analysis
- To impart knowledge on solving circuit equations using network theorems
- To introduce the phenomenon of resonance in coupled circuits.
- To educate on obtaining the transient response of circuits.
- To introduce Phasor diagrams and analysis of three phase circuits

UNIT I BASIC CIRCUITS ANALYSIS

Resistive elements - Ohm's Law Resistors in series and parallel circuits – Kirchoffs laws – Mesh current and node voltage - methods of analysis.

UNIT II NETWORK REDUCTION AND THEOREMS FOR DC AND AC IRCUITS 6+6

Network reduction: voltage and current division, source transformation – star delta conversion. Thevenins and Norton Theorems – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem – Millman's theorem.

UNIT III TRANSIENT RESPONSE ANALYSIS

L and C elements -Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. sinusoidal input.

UNIT IV THREE PHASE CIRCUITS

A.C. circuits – Average and RMS value - Phasor Diagram – Power, Power Factor and Energy.-Analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power measurement in three phase circuits.

UNIT V RESONANCE AND COUPLED CIRCUITS

Series and parallel resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.

TOTAL: 60 PERIODS

OUTCOMES:

- Ability to analyse electrical circuits
- Ability to apply circuit theorems
- Ability to analyse transients

TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", McGraw Hill publishers, edition, New Delhi, 2013.
- 2. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2013.

L T P C 2 2 0 3

6+6

6+6

6+6

6+6

REFERENCES

- 1. V.V.Sarwate, 'Electromagnetic fields and waves', First Edition, Newage Publishers, 1993.
- 2. J.P.Tewari, 'Engineering Electromagnetics Theory, Problems and Applications', Second Edition, Khanna Publishers.
- 3. Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series), McGraw Hill, 2010.
- 4. S.P.Ghosh, Lipika Datta, 'Electromagnetic Field Theory', First Edition, McGraw Hill Education(India) Private Limited, 2012.
- 5. K A Gangadhar, 'Electromagnetic Field Theory', Khanna Publishers; Eighth Reprint : 2015

EE8301		L	Т	Ρ	С
	ELECTRICAL MACHINES – I	2	2	0	3

OBJECTIVES:

To impart knowledge on the following Topics

- Magnetic-circuit analysis and introduce magnetic materials
- Constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.
- Working principles of electrical machines using the concepts of electromechanical energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
- Working principles of DC machines as Generator types, determination of their noload/load characteristics, starting and methods of speed control of motors.
- Various losses taking place in D.C. Motor and to study the different testing methods to arrive at their performance.

UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

Magnetic circuits –Laws governing magnetic circuits - Flux linkage, Inductance and energy – Statically and Dynamically induced EMF - Torque – Properties of magnetic materials, Hysteresis and Eddy Current losses - AC excitation, introduction to permanent magnets-Transformer as a magnetically coupled circuit.

6+6

6+6

UNIT II TRANSFORMERS

Construction – principle of operation – equivalent circuit parameters – phasor diagrams, losses – testing – efficiency and voltage regulation-all day efficiency-Sumpner's test, per unit representation – inrush current - three phase transformers-connections – Scott Connection – Phasing of transformer– parallel operation of three phase transformers-auto transformer – tap changing transformers- tertiary winding.

UNIT III ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS 6+6 IN ROTATING MACHINES

Energy in magnetic system – Field energy and co energy-force and torque equations – singly and multiply excited magnetic field systems-mmf of distributed windings – Winding Inductances-, magnetic fields in rotating machines – rotating mmf waves – magnetic

saturation and leakage fluxes.

UNIT IV DC GENERATORS

Construction and components of DC Machine – Principle of operation - Lap and wave windings-EMF equations– circuit model – armature reaction – methods of excitation-commutation - interpoles compensating winding –characteristics of DC generators.

UNIT V DC MOTORS

Principle and operations - types of DC Motors – Speed Torque Characteristics of DC Motorsstarting and speed control of DC motors –Plugging, dynamic and regenerative brakingtesting and efficiency – Retardation test- Swinburne's test and Hopkinson's test - Permanent Magnet DC (PMDC)motors-applications of DC Motor

TOTAL: 60 PERIODS

OUTCOMES:

- Ability to analyze the magnetic-circuits.
- Ability to acquire the knowledge in constructional details of transformers.
- Ability to understand the concepts of electromechanical energy conversion.
- Ability to acquire the knowledge in working principles of DC Generator.
- Ability to acquire the knowledge in working principles of DC Motor
- Ability to acquire the knowledge in various losses taking place in D.C. Machines

TEXT BOOKS:

- **1.** Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 2010.
- 2. P.C. Sen'Principles of Electric Machines and Power Electronics' John Wiley & Sons; 3rd Edition 2013.
- 3. Nagrath, I.J. and Kothari.D.P., Electric Machines', McGraw-Hill Education, 2004

REFERENCES

- 1. Theodore Wildi, "Electrical Machines, Drives, and Power Systems", Pearson Education., (5th Edition), 2002.
- **2.** B.R. Gupta ,'Fundamental of Electric Machines' New age International Publishers,3rd Edition ,Reprint 2015.
- **3.** S.K. Bhattacharya, 'Electrical Machines' McGraw Hill Education, New Delhi, 3rd Edition,2009.
- 4. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.
- 5. Surinder Pal Bali, 'Electrical Technology Machines & Measurements, Vol.II, Pearson, 2013.
- **6.** Fitzgerald. A.E., Charles Kingsely Jr, Stephen D.Umans, 'Electric Machinery', Sixth edition, McGraw Hill Books Company, 2003.

6+6

6+6

EC8353

ELECTRON DEVICES AND CIRCUITS

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- Understand the structure of basic electronic devices. •
- Be exposed to active and passive circuit elements. •
- Familiarize the operation and applications of transistor like BJT and FET.
- Explore the characteristics of amplifier gain and frequency response. •
- Learn the required functionality of positive and negative feedback systems. •

UNIT I **PN JUNCTION DEVICES**

PN junction diode -structure, operation and V-I characteristics, diffusion and transition capacitance -Rectifiers - Half Wave and Full Wave Rectifier, - Display devices- LED, Laser diodes, Zener diodecharacteristics- Zener Reverse characteristics - Zener as regulator

TRANSISTORS AND THYRISTORS UNIT II

BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristors and IGBT -Structure and characteristics.

UNIT III **AMPLIFIERS**

BJT small signal model - Analysis of CE, CB, CC amplifiers- Gain and frequency response -MOSFET small signal model- Analysis of CS and Source follower - Gain and frequency response- High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

BIMOS cascade amplifier, Differential amplifier - Common mode and Difference mode analysis - FET input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers -Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

Advantages of negative feedback - voltage / current, series , Shunt feedback - positive feedback -Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

OUTCOMES:

Upon Completion of the course, the students will be ability to:

- Explain the structure and working operation of basic electronic devices. •
- Able to identify and differentiate both active and passive elements •
- Analyze the characteristics of different electronic devices such as diodes and • transistors
- Choose and adapt the required components to construct an amplifier circuit. .
- Employ the acquired knowledge in design and analysis of oscillators •

TEXT BOOKS:

- 1. David A. Bell, "Electronic devices and circuits", Oxford University higher education, 5th edition 2008.
- 2. Sedra and smith, "Microelectronic circuits", 7th Ed., Oxford University Press

TOTAL : 45 PERIODS

9

9

9

9

REFERENCES:

- 1. Balbir Kumar, Shail.B.Jain, "Electronic devices and circuits" PHI learning private limited, 2nd edition 2014.
- Thomas L.Floyd, "Electronic devices" Conventional current version, Pearson prentice hall, 10th Edition, 2017.
- 3. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGraw Hill, 3rd Edition, 2003.
- 4. Robert L.Boylestad, "Electronic devices and circuit theory", 2002.
- 5. Robert B. Northrop, "Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation", CRC Press, 2004.

ME8792	POWER PLANT ENGINEERING	L	Т	Ρ	С
		3	0	0	3

OBJECTIVE:

Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

UNIT I COAL BASED THERMAL POWER PLANTS

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS 9

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, *Solar* Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

9

9

9

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the layout, construction and working of the components inside a thermal power plant.
- CO2 Explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.
- CO3 Explain the layout, construction and working of the components inside nuclear power plants.
- CO4 Explain the layout, construction and working of the components inside Renewable energy power plants.
- CO5 Explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.

TEXT BOOK:

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company Ltd., 2008.

REFERENCES:

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.

EC8311

ELECTRONICS LABORATORY

L T P C 0 0 4 2

OBJECTIVES:

• To enability the students to understand the behavior of semiconductor device based on experimentation.

LIST OF EXPERIMENTS

- 1. Characteristics of Semiconductor diode and Zener diode
- 2. Characteristics of a NPN Transistor under common emitter , common collector and common base configurations
- 3. Characteristics of JFET and draw the equivalent circuit
- 4. Characteristics of UJT and generation of saw tooth waveforms
- 5. Design and Frequency response characteristics of a Common Emitter amplifier
- 6. Characteristics of photo diode & photo transistor, Study of light activated relay circuit
- 7. Design and testing of RC phase shift and LC oscillators
- 8. Single Phase half-wave and full wave rectifiers with inductive and capacitive filters
- 9. Differential amplifiers using FET
- 10. Study of CRO for frequency and phase measurements

EE8401

OBJECTIVES:

To impart knowledge on the following Topics

- Construction and performance of salient and non salient type synchronous generators.
- Principle of operation and performance of synchronous motor.
- Construction, principle of operation and performance of induction machines.
- Starting and speed control of three-phase induction motors.
- Construction, principle of operation and performance of single phase induction motors and special machines.

UNIT I SYNCHRONOUS GENERATOR

Constructional details – Types of rotors –winding factors- emf equation – Synchronous reactance – Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus--Synchronizing and parallel operation - Synchronizing torque -Change of excitation and mechanical input- Voltage regulation - EMF, MMF, ZPF and A.S.A methods - steady state power- angle characteristics- Two reaction theory -slip test -short circuit transients - Capability Curves

UNIT II SYNCHRONOUS MOTOR

Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves - Power input and power developed equations - Starting methods - Current loci for constant power input, constant excitation and constant power developed-Hunting – natural frequency of oscillations – damper windings- synchronous condenser.

UNIT III THREE PHASE INDUCTION MOTOR

Constructional details - Types of rotors -- Principle of operation - Slip -cogging and crawling- Equivalent circuit - Torque-Slip characteristics - Condition for maximum torque -Losses and efficiency - Load test - No load and blocked rotor tests - Circle diagram -Separation of losses – Double cage induction motors –Induction generators – Synchronous induction motor.

STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION 6+6 UNIT IV MOTOR

Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Stardelta starters – Speed control – Voltage control, Frequency control and pole changing – Cascaded connection-V/f control – Slip power recovery scheme-Braking of three phase induction motor: Plugging, dynamic braking and regenerative braking.

6+6 UNIT V SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES Constructional details of single phase induction motor - Double field revolving theory and operation - Equivalent circuit - No load and blocked rotor test - Performance analysis -Starting methods of single-phase induction motors – Capacitor-start capacitor run Induction Shaded pole induction motor - Linear induction motor - Repulsion motor motor-Hysteresis motor - AC series motor- Servo motors- Stepper motors - introduction to magnetic levitation systems.

TOTAL: 60 PERIODS

6+6

6+6

6+6

OUTCOMES:

- Ability to understand the construction and working principle of Synchronous Generator
- Ability to understand MMF curves and armature windings.
- Ability to acquire knowledge on Synchronous motor.
- Ability to understand the construction and working principle of Three phase Induction
 Motor
- Ability to understand the construction and working principle of Special Machines
- Ability to predetermine the performance characteristics of Synchronous Machines.

TEXT BOOKS:

- 1. A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 2003.
- 2. Vincent Del Toro, 'Basic Electric Machines' Pearson India Education, 2016.
- **3.** Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 2010.

REFERENCES

- **1.** D.P. Kothari and I.J. Nagrath, 'Electric Machines', McGraw Hill Publishing Company Ltd, 2002.
- **2.** P.S. Bhimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
- **3.** M.N. Bandyopadhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi, 2009.
- **4.** B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers,3rd Edition ,Reprint 2015.
- 5. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, 2002.
- **6.** Alexander S. Langsdorf, 'Theory of Alternating-Current Machinery', McGraw Hill Publications, 2001.

TRANSMISSION AND DISTRIBUTION

L T P C 3 0 0 3

OBJECTIVES:

EE8402

- To study the structure of electric power system and to develop expressions for the computation of transmission line parameters.
- To obtain the equivalent circuits for the transmission lines based on distance and to determine voltage regulation and efficiency.
- To understand the mechanical design of transmission lines and to analyze the voltage distribution in insulator strings to improve the efficiency.
- To study the types, construction of cables and methods to improve the efficiency.
- To study about distribution systems, types of substations, methods of grounding, EHVAC, HVDC and FACTS.

UNIT I TRANSMISSION LINE PARAMETERS

Structure of Power System - Parameters of single and three phase transmission lines with single and double circuits -Resistance, inductance and capacitance of solid, stranded and bundled conductors, Symmetrical and unsymmetrical spacing and transposition - application of self and mutual GMD; skin and proximity effects -Typical configurations, conductor types and electrical parameters of EHV lines.

UNIT II MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Performance of Transmission lines - short line, medium line and long line - equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance - transmission efficiency and voltage regulation, real and reactive power flow in lines - Power Circle diagrams - Formation of Corona – Critical Voltages – Effect on Line Performance.

UNIT III MECHANICAL DESIGN OF LINES

Mechanical design of OH lines – Line Supports –Types of towers – Stress and Sag Calculation – Effects of Wind and Ice loading. Insulators: Types, voltage distribution in insulator string, improvement of string efficiency, testing of insulators.

UNIT IV UNDER GROUND CABLES

Underground cables - Types of cables – Construction of single core and 3 core cables - Insulation Resistance – Potential Gradient - Capacitance of Single-core and 3 core cables - Grading of cables - Power factor and heating of cables – DC cables.

UNIT V DISTRIBUTION SYSTEMS

Distribution Systems – General Aspects – Kelvin's Law – AC and DC distributions -Techniques of Voltage Control and Power factor improvement – Distribution Loss –Types of Substations -Methods of Grounding – Trends in Transmission and Distribution: EHVAC, HVDC and FACTS (Qualitative treatment only).

TOTAL: 45 PERIODS

OUTCOMES:

- To understand the importance and the functioning of transmission line parameters.
- To understand the concepts of Lines and Insulators.
- To acquire knowledge on the performance of Transmission lines.
- To understand the importance of distribution of the electric power in power system.
- To acquire knowledge on Underground Cables
- To become familiar with the function of different components used in Transmission and Distribution levels of power system and modelling of these components.

TEXT BOOKS:

- 1. D.P.Kothari, I.J. Nagarath, 'Power System Engineering', Mc Graw-Hill Publishing Company limited, New Delhi, Second Edition, 2008.
- 2. C.L.Wadhwa, 'Electrical Power Systems', New Academic Science Ltd, 2009.
- 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.

REFERENCES

- 1. B.R.Gupta, 'Power System Analysis and Design' S. Chand, New Delhi, Fifth Edition, 2008.
- 2. Luces M.Fualken berry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 2007.
- 3. Arun Ingole, "power transmission and distribution" Pearson Education, 2017
- 4. J.Brian, Hardy and Colin R.Bayliss 'Transmission and Distribution in Electrical Engineering', Newnes; Fourth Edition, 2012.
- 5. G.Ramamurthy, "Handbook of Electrical power Distribution," Universities Press, 2013.

9

9

UNIT V APPLICATION ICs

AD623 Instrumentation Amplifier and its application as load cell weight measurement - IC voltage regulators –LM78XX, LM79XX; Fixed voltage regulators its application as Linear power supply - LM317, 723 Variability voltage regulators, switching regulator- SMPS - ICL 8038 function generator IC.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to acquire knowledge in IC fabrication procedure
- Ability to analyze the characteristics of Op-Amp
- To understand the importance of Signal analysis using Op-amp based circuits.
- Functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits.
- To understand and acquire knowledge on the Applications of Op-amp
- Ability to understand and analyse, linear integrated circuits their Fabrication and Application.

TEXT BOOKS:

- 1. David A. Bell, 'Op-amp & Linear ICs', Oxford, 2013.
- 2. D. Roy Choudhary, Sheil B. Jani, 'Linear Integrated Circuits', II edition, New Age, 2003.
- **3.** Ramakant A.Gayakward, 'Op-amps and Linear Integrated Circuits', IV edition, Pearson Education, 2003 / PHI. 2000.

REFERENCES

- **1.** Fiore, "Opamps & Linear Integrated Circuits Concepts & applications", Cengage, 2010.
- **2.** Floyd ,Buchla,"Fundamentals of Analog Circuits, Pearson, 2013.
- **3.** Jacob Millman, Christos C.Halkias, 'Integrated Electronics Analog and Digital circuits system', McGraw Hill, 2003.
- **4.** Robert F.Coughlin, Fredrick F. Driscoll, 'Op-amp and Linear ICs', Pearson, 6th edition,2012.
- 5. Sergio Franco, 'Design with Operational Amplifiers and Analog Integrated Circuits', Mc Graw Hill, 2016.
- 6. Muhammad H. Rashid,' Microelectronic Circuits Analysis and Design' Cengage Learning, 2011.

IC8451

CONTROL SYSTEMS

LT P C 3 2 0 4

COURSE OBJECTIVES

- To understand the use of transfer function models for analysis physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems.
- To introduce stability analysis and design of compensators

60

To introduce state variable representation of physical systems

UNIT I SYSTEMS AND REPRESENTATION

Basic elements in control systems: - Open and closed loop systems - Electrical analogy of mechanical and thermal systems - Transfer function - AC and DC servomotors - Block diagram reduction techniques - Signal flow graphs.

UNIT II TIME RESPONSE

Time response: - Time domain specifications - Types of test input - I and II order system response -Error coefficients - Generalized error series - Steady state error - Root locus construction- Effects of P, PI, PID modes of feedback control –Time response analysis.

FREQUENCY RESPONSE UNIT III

Frequency response: - Bode plot - Polar plot - Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications

UNIT IV STABILITY AND COMPENSATOR DESIGN

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Effect of Lag, lead and lag-lead compensation on frequency response-Design of Lag, lead and laglead compensator using bode plots.

UNIT V **STATE VARIABLE ANALYSIS**

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability.

TOTAL (L: 45+T:30): 75 PERIODS

COURSE OUTCOMES At the end of the course, the student should have the :

- Ability to develop various representations of system based on the knowledge of • Mathematics, Science and Engineering fundamentals.
- Ability to do time domain and frequency domain analysis of various models of linear • system.
- Ability to interpret characteristics of the system to develop mathematical model. •
- Ability to design appropriate compensator for the given specifications. •
- Ability to come out with solution for complex control problem. •
- Ability to understand use of PID controller in closed loop system. •

TEXT BOOKS

- 1. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017.
- 2. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.

REFERENCES

- Katsuhiko Ogata, "Modern Control Engineering", Pearson, 2015. 1.
- 2. Richard C.Dorf and Bishop, R.H., "Modern Control Systems", Pearson Education, 2009.
- 3. John J.D., Azzo Constantine, H. and Houpis Sttuart, N Sheldon, "Linear Control System Analysis and Design with MATLAB", CRC Taylor& Francis Reprint 2009.
- 4. Rames C.Panda and T. Thyagarajan, "An Introduction to Process Modelling Identification and Control of Engineers", Narosa Publishing House, 2017.
- M.Gopal, "Control System: Principle and design", McGraw Hill Education, 2012. 5.
- 6. NPTEL Video Lecture Notes on "Control Engineering "by Prof. S. D. Agashe, IIT Bombay.

9

9

9

9

OUTCOMES:

- Ability to review, prepare and present technological developments
- Ability to face the placement interviews

EE8501 POWER SYSTEM ANALYSIS

OBJECTIVES:

- To model the power system under steady state operating condition
- To understand and apply iterative techniques for power flow analysis
- To model and carry out short circuit studies on power system
- To model and analyze stability problems in power system

UNIT I POWER SYSTEM

Need for system planning and operational studies - Power scenario in India - Power system components – Representation - Single line diagram - per unit quantities - p.u. impedance diagram - p.u. reactance diagram - Network graph, Bus incidence matrix, Primitive parameters, Bus admittance matrix from primitive parameters - Representation of off-nominal transformer - Formation of bus admittance matrix of large power network.

UNIT II POWER FLOW ANALYSIS

Bus classification - Formulation of Power Flow problem in polar coordinates - Power flow solution using Gauss Seidel method - Handling of Voltage controlled buses - Power Flow Solution by Newton Raphson method.

UNIT III SYMMETRICAL FAULT ANALYSIS

Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem - Bus Impedance matrix building algorithm (without mutual coupling) - Symmetrical fault analysis through bus impedance matrix - Post fault bus voltages - Fault level - Current limiting reactors.

UNIT IV UNSYMMETRICAL FAULT ANALYSIS

Symmetrical components - Sequence impedances - Sequence networks - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system - computation of post fault currents in symmetrical component and phasor domains.

UNIT V STABILITY ANALYSIS

Classification of power system stability – Rotor angle stability - Swing equation - Swing curve - Power-Angle equation - Equal area criterion - Critical clearing angle and time - Classical step-by-step solution of the swing equation – modified Euler method.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to model the power system under steady state operating condition
- Ability to understand and apply iterative techniques for power flow analysis
- Ability to model and carry out short circuit studies on power system
- · Ability to model and analyze stability problems in power system

9

9

9

9

9

С

3

ТР

Ω

- Ability to acquire knowledge on Fault analysis.
- Ability to model and understand various power system components and carry out power flow, short circuit and stability studies.

TEXT BOOKS:

- 1. John J. Grainger, William D. Stevenson, Jr, 'Power System Analysis', Mc Graw Hill Education (India) Private Limited, New Delhi, 2015.
- 2. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
- 3. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.

REFERENCES

- 1. Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- J. Duncan Glover, Mulukutla S.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 3. Gupta B.R., 'Power System Analysis and Design', S. Chand Publishing, 2001.
- 4. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.

EE8551 MICROPROCESSORS AND MICROCONTROLLERS L T P C

3 0 0 3

OBJECTIVES:

To impart knowledge on the following Topics

- Architecture of µP8085 & µC 8051
- Addressing modes & instruction set of 8085 & 8051.
- Need & use of Interrupt structure 8085 & 8051.
- Simple applications development with programming 8085 & 8051

UNIT I 8085 PROCESSOR

Hardware Architecture, pinouts – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts.

UNIT II PROGRAMMING OF 8085 PROCESSOR

Instruction -format and addressing modes – Assembly language format – Data transfer, data manipulation& control instructions – Programming: Loop structure with counting & Indexing – Look up tability - Subroutine instructions - stack.

UNIT III 8051 MICRO CONTROLLER

Hardware Architecture, pinouts – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts- Data Transfer, Manipulation, Control Algorithms& I/O instructions, Comparison to Programming concepts with 8085.

9

9

UNIT IV PERIPHERAL INTERFACING

Study on need, Architecture, configuration and interfacing, with ICs: 8255, 8259, 8254, 8279, - A/D and D/A converters &Interfacing with 8085& 8051.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS

Simple programming exercises- key board and display interface –Control of servo motorstepper motor control- Application to automation systems.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to acquire knowledge in Addressing modes & instruction set of 8085 & 8051.
- Ability to need & use of Interrupt structure 8085 & 8051.
- Ability to understand the importance of Interfacing
- Ability to explain the architecture of Microprocessor and Microcontroller.
- Ability to write the assembly language programme.
- Ability to develop the Microprocessor and Microcontroller based applications.

TEXT BOOKS:

- 1. Sunil Mathur & Jeebananda Panda, "Microprocessor and Microcontrollers", PHI Learning Pvt. Ltd, 2016.
- **2.** R.S. Gaonkar, 'Microprocessor Architecture Programming and Application', with 8085, Wiley Eastern Ltd., New Delhi, 2013.
- **3.** Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI Pearson Education, 5th Indian reprint, 2003.

REFERENCES

- **1.** Krishna Kant, "Microprocessor and Microcontrollers", Eastern Company Edition, Prentice Hall of India, New Delhi, 2007.
- **2.** B.RAM," Computer Fundamentals Architecture and Organization" New age International Private Limited, Fifth edition, 2017.
- **3.** Soumitra Kumar Mandal, Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085,8086,8051,McGraw Hill Edu,2013.
- 4. Ajay V.Deshmukh, 'Microcontroller Theory & Applications', McGraw Hill Edu, 2016
- 5. Douglas V.Hall, 'Microprocessor and Interfacing', McGraw Hill Edu, 2016.

EE8552

POWER ELECTRONICS

L T P C 3 0 0 3

OBJECTIVES:

To impart knowledge on the following Topics

- Different types of power semiconductor devices and their switching
- Operation, characteristics and performance parameters of controlled rectifiers
- Operation, switching techniques and basics topologies of DC-DC switching regulators.
- Different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
- Operation of AC voltage controller and various configurations.

q

UNIT I POWER SEMI-CONDUCTOR DEVICES

Study of switching devices, SCR, TRIAC, GTO, BJT, MOSFET, IGBT and IGCT- Static characteristics: SCR, MOSFET and IGBT - Triggering and commutation circuit for SCR-Introduction to Driver and snubber circuits.

UNIT II PHASE-CONTROLLED CONVERTERS

2-pulse, 3-pulse and 6-pulseconverters– performance parameters –Effect of source inductance— Firing Schemes for converter–Dual converters, Applications-light dimmer, Excitation system, Solar PV systems.

UNIT III DC TO DC CONVERTERS

Step-down and step-up chopper-control strategy– Introduction to types of choppers-A, B, C, D and E -Switched mode regulators- Buck, Boost, Buck- Boost regulator, Introduction to Resonant Converters, Applications-Battery operated vehicles.

UNIT IV INVERTERS

Single phase and three phase voltage source inverters (both120[°] mode and 180[°] mode)– Voltage& harmonic control--PWM techniques: Multiple PWM, Sinusoidal PWM, modified sinusoidal PWM – Introduction to space vector modulation –Current source inverter, Applications-Induction heating, UPS.

UNIT V AC TO AC CONVERTERS

Single phase and Three phase AC voltage controllers–Control strategy- Power Factor Control – Multistage sequence control -single phase and three phase cyclo converters – Introduction to Matrix converters, Applications –welding .

OUTCOMES:

- Ability to analyse AC-AC and DC-DC and DC-AC converters.
- Ability to choose the converters for real time applications.

TEXT BOOKS:

- **1.** M.H. Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, Third Edition, New Delhi, 2004.
- **2.** P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2003.
- **3.** Ashfaq Ahmed 'Power Electronics for Technology', Pearson Education, Indian reprint, 2003.

REFERENCES

- 1. Joseph Vithayathil,' Power Electronics, Principles and Applications', McGraw Hill Series, 6th Reprint, 2013.
- 2. Philip T. Krein, "Elements of Power Electronics" Oxford University Press, 2004 Edition.
- **3.** L. Umanand, "Power Electronics Essentials and Applications", Wiley, 2010.
- **4.** Ned Mohan Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Converters, Applications and Design', John Wiley and sons, third edition, 2003.
- 5. S.Rama Reddy, 'Fundamentals of Power Electronics', Narosa Publications, 2014.
- 6. M.D. Singh and K.B. Khanchandani, "Power Electronics," Mc Graw Hill India, 2013.
- **7.** JP Agarwal," Power Electronic Systems: Theory and Design" 1e, Pearson Education, 2002.

٩

9

9

9

9

PERIODS

TOTAL: 45

9

9

9

9

9

OBJECTIVES:

To impart knowledge on the following Topics

- Steady state operation and transient dynamics of a motor load system.
- Analyze the operation of the converter/chopper fed dc drive, both qualitatively and quantitatively.
- Operation and performance of AC motor drives.
- Analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

UNIT I DRIVE CHARACTERISTICS

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics – Selection of motor.

UNIT II CONVERTER / CHOPPER FED DC MOTOR DRIVE

Steady state analysis of the single and three phase converter fed separately excited DC motor drive– continuous conduction – Time ratio and current limit control – 4 quadrant operation of converter / chopper fed drive-Applications.

UNIT III INDUCTION MOTOR DRIVES

Stator voltage control–V/f control– Rotor Resistance control-qualitative treatment of slip power recovery drives-closed loop control— vector control- Applications.

UNIT IV SYNCHRONOUS MOTOR DRIVES

V/f control and self-control of synchronous motor: Margin angle control and power factor control-Three phase voltage/current source fed synchronous motor- Applications.

UNIT V DESIGN OF CONTROLLERS FOR DRIVES

Transfer function for DC motor / load and converter – closed loop control with Current and speed feedback–armature voltage control and field weakening mode – Design of controllers; current controller and speed controller- converter selection and characteristics.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to understand and suggest a converter for solid state drive.
- Ability to select suitability drive for the given application.
- Ability to study about the steady state operation and transient dynamics of a motor load system.
- Ability to analyze the operation of the converter/chopper fed dc drive.
- Ability to analyze the operation and performance of AC motor drives.
- Ability to analyze and design the current and speed controllers for a closed loop solid state DC motor drive.

TEXT BOOKS:

- **1.** Gopal K.Dubey, Fundamentals of Electrical Drives, Narosa Publishing House, 1992.
- **2.** Bimal K.Bose. Modern Power Electronics and AC Drives, Pearson Education, 2002.
- **3.** R.Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Pearson, 2001.

REFERENCES

1. Vedam Subramanyam, " Electric Drives Concepts and Applications ", 2e, McGraw Hill, 2016

- Ability to analyze the characteristics and functions of relays and protection schemes.
- Ability to study about the apparatus protection, static and numerical relays.
- Ability to acquire knowledge on functioning of circuit breaker.

TEXT BOOKS:

- 1. Sunil S.Rao, 'Switchgear and Protection', Khanna Publishers, New Delhi, 2008.
- 2. B.Rabindranath and N.Chander, 'Power System Protection and Switchgear', New Age International (P) Ltd., First Edition 2011.
- 3. Arun Ingole, 'Switch Gear and Protection' Pearson Education, 2017.

REFERENCEŠ

- **1.** BadriRam ,B.H. Vishwakarma, 'Power System Protection and Switchgear', New Age InternationalPvt Ltd Publishers, Second Edition 2011.
- **2.** Y.G.Paithankar and S.R.Bhide, 'Fundamentals of power system protection', Second Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. C.L.Wadhwa, 'Electrical Power Systems', 6th Edition, New Age International (P) Ltd., 2010
- 4. RavindraP.Singh, 'Switchgear and Power System Protection', PHI Learning Private Ltd., NewDelhi, 2009.
- 5. VK Metha," Principles of Power Systems" S. Chand, 2005.
- 6. Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani,'Protection and Switchgear' Oxford University Press, 2011.

EE8691

EMBEDDED SYSTEMS

L T P C 3 0 0 3

OBJECTIVES:

To impart knowledge on the following Topics

- Building Blocks of Embedded System
- Various Embedded Development Strategies
- Bus Communication in processors, Input/output interfacing.
- Various processor scheduling algorithms.
- Basics of Real time operating system and example tutorials to discuss on one real time operating system tool.

UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems –Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

UNIT II EMBEDDED NETWORKING

Embedded Networking: Introduction, I/O Device Ports & Buses– Serial Bus communication protocols RS232 standard – RS422 – RS 485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I^2C) –need for device drivers.

UNIT III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model,

9 of

9

Sequential Program Model, concurrent Model, object oriented Model.

UNIT IV RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance.

UNIT V EMBEDDED SYSTEM APPLICATION AND DEVELOPMENT

Case Study of Washing Machine- Automotive Application- Smart card System Application-ATM machine –Digital camera

OUTCOMES:

TOTAL: 45 PERIODS

0

0 4 2

9

9

- Ability to understand and analyze Embedded systems.
- Ability to suggest an embedded system for a given application.
- Ability to operate various Embedded Development Strategies
- Ability to study about the bus Communication in processors.
- Ability to acquire knowledge on various processor scheduling algorithms.
- Ability to understand basics of Real time operating system.

TEXT BOOKS:

- 1. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
- 3. Shibu. K.V, "Introduction to Embedded Systems", 2e, Mc graw Hill, 2017.

REFERENCES

- 1. Raj Kamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. C.R.Sarma, "Embedded Systems Engineering", University Press (India) Pvt. Ltd, 2013.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.

EE8661 POWER ELECTRONICS AND DRIVES LABORATORY L T P C

OBJECTIVES:

• To provide hands on experience with power electronic converters and testing.

LIST OF EXPERIMENTS

- 1 Gate Pulse Generation using R, RC and UJT.
- 2 Characteristics of SCR and TRIAC
- 3 Characteristics of MOSFET and IGBT
- 4 AC to DC half controlled converter
- 5 AC to DC fully controlled Converter
- 6 Step down and step up MOSFET based choppers
- 7 IGBT based single phase PWM inverter

- **2.** Shaahin Felizadeh, "Electric Machines and Drives", CRC Press (Taylor and Francis Group), 2013.
- **3.** John Hindmarsh and Alasdain Renfrew, "Electrical Machines and Drives System," Elsevier 2012.
- **4.** Theodore Wildi, "Electrical Machines ,Drives and power systems ,6th edition, Pearson Education ,2015
- 5. N.K. De., P.K. SEN" Electric drives" PHI, 2012.

EE8602PROTECTION AND SWITCHGEARL T P C

OBJECTIVES:

To impart knowledge on the following Topics

- Causes of abnormal operating conditions (faults, lightning and switching surges) of the apparatus and system.
- Characteristics and functions of relays and protection schemes.
- Apparatus protection, static and numerical relays
- Functioning of circuit breaker

UNIT I PROTECTION SCHEMES

Principles and need for protective schemes – nature and causes of faults – types of faults – Methods of Grounding - Zones of protection and essential qualities of protection – Protection scheme

UNIT II ELECTROMAGNETIC RELAYS

Operating principles of relays - the Universal relay – Torque equation – R-X diagram – Electromagnetic Relays – Over current, Directional, Distance, Differential, Negative sequence and Under frequency relays.

UNIT III APPARATUS PROTECTION

Current transformers and Potential transformers and their applications in protection schemes - Protection of transformer, generator, motor, bus bars and transmission line.

UNIT IV STATIC RELAYS AND NUMERICAL PROTECTION

Static relays – Phase, Amplitude Comparators – Synthesis of various relays using Static comparators – Block diagram of Numerical relays – Over current protection, transformer differential protection, distant protection of transmission lines.

UNIT V CIRCUIT BREAKERS

Physics of arcing phenomenon and arc interruption - DC and AC circuit breaking – re-striking voltage and recovery voltage - rate of rise of recovery voltage - resistance switching - current chopping - interruption of capacitive current - Types of circuit breakers – air blast, air break, oil, SF6, MCBs, MCCBs and vacuum circuit breakers – comparison of different circuit breakers – Rating and selection of Circuit breakers.

OUTCOMES:

- Ability to understand and analyze Electromagnetic and Static Relays.
- Ability to suggest suitability circuit breaker.
- Ability to find the causes of abnormal operating conditions of the apparatus and system.

TOTAL : 45 PERIODS

9

9

9

3

3 0 0

9

EE8702 POWER SYSTEM OPERATION AND CONTROL

L T P C 3 0 0 3

OBJECTIVES:

To impart knowledge on the following topics

- Significance of power system operation and control.
- Real power-frequency interaction and design of power-frequency controller.
- Reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- Economic operation of power system.
- SCADA and its application for real time operation and control of power systems

UNIT I PRELIMINARIES ON POWER SYSTEM OPERATION AND CONTROL

Power scenario in Indian grid – National and Regional load dispatching centers – requirements of good power system - necessity of voltage and frequency regulation - real power vs frequency and reactive power vs voltage control loops - system load variation, load curves and basic concepts of load dispatching - load forecasting - Basics of speed governing mechanisms and modeling - speed load characteristics - regulation of two generators in parallel.

UNIT II REAL POWER - FREQUENCY CONTROL

Load Frequency Control (LFC) of single area system-static and dynamic analysis of uncontrolled and controlled cases - LFC of two area system - tie line modeling - block diagram representation of two area system - static and dynamic analysis - tie line with frequency bias control – state variability model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER – VOLTAGE CONTROL

Generation and absorption of reactive power - basics of reactive power control – Automatic Voltage Regulator (AVR) – brushless AC excitation system – block diagram representation of AVR loop - static and dynamic analysis – stability compensation – voltage drop in transmission line - methods of reactive power injection - tap changing transformer, SVC (TCR + TSC) and STATCOM for voltage control.

UNIT IV ECONOMIC OPERATION OF POWER SYSTEM

Statement of economic dispatch problem - input and output characteristics of thermal plant - incremental cost curve - optimal operation of thermal units without and with transmission losses (no derivation of transmission loss coefficients) - base point and participation factors method - statement of unit commitment (UC) problem - constraints on UC problem - solution of UC problem using priority list – special aspects of short term and long term hydrothermal problems.

UNIT V COMPUTER CONTROL OF POWER SYSTEMS

Need of computer control of power systems-concept of energy control centers and functions – PMU - system monitoring, data acquisition and controls - System hardware configurations - SCADA and EMS functions - state estimation problem – measurements and errors - weighted least square estimation - various operating states - state transition diagram.

9

9

9

9

q

9

OUTCOMES:

- Ability to understand the day-to-day operation of electric power system.
- Ability to analyze the control actions to be implemented on the system to meet the minute-to-minute variation of system demand.
- Ability to understand the significance of power system operation and control.
- Ability to acquire knowledge on real power-frequency interaction.
- Ability to understand the reactive power-voltage interaction.
- Ability to design SCADA and its application for real time operation.

TEXT BOOKS:

- **1.** Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- **2.** Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2016.
- **3.** Abhijit Chakrabarti and Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

REFERENCES

- **1.** Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
- **2.** Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.
- **3.** Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.

EE8703 RENEWABLE ENERGY SYSTEMS L T P C 3 0 0 3

OBJECTIVES:

To impart knowledge on the following Topics

- Awareness about renewable Energy Sources and technologies.
- Adequate inputs on a variety of issues in harnessing renewable Energy.
- Recognize current and possible future role of renewable energy sources.

UNIT I RENEWABLE ENERGY (RE) SOURCES

Environmental consequences of fossil fuel use, Importance of renewable sources of energy, Sustainable Design and development, Types of RE sources, Limitations of RE sources, Present Indian and international energy scenario of conventional and RE sources.

UNIT II WIND ENERGY

Power in the Wind – Types of Wind Power Plants(WPPs)–Components of WPPs-Working of WPPs- Siting of WPPs-Grid integration issues of WPPs.

UNIT III SOLAR PV AND THERMAL SYSTEMS

Solar Radiation, Radiation Measurement, Solar Thermal Power Plant, Central Receiver Power Plants, Solar Ponds.- Thermal Energy storage system with PCM- Solar Photovoltaic systems : Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV Module I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections, maximum power point tracking, Applications.

UNIT IV BIOMASS ENERGY

Introduction-Bio mass resources –Energy from Bio mass: conversion processes-Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Classification of water turbine, Turbine theory, Essential components of hydroelectric system.

UNIT V OTHER ENERGY SOURCES

Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems. Wave Energy: Energy from waves, wave power devices. Ocean Thermal Energy Conversion (OTEC)- Hydrogen Production and Storage- Fuel cell : Principle of working- various types - construction and applications. Energy Storage System- Hybrid Energy Systems.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to create awareness about renewable Energy Sources and technologies.
- Ability to get adequate inputs on a variety of issues in harnessing renewable Energy.
- Ability to recognize current and possible future role of renewable energy sources.
- Ability to explain the various renewable energy resources and technologies and their applications.
- Ability to understand basics about biomass energy.
- Ability to acquire knowledge about solar energy.

TEXT BOOKS:

- 1. Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2011.
- 2. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.
- **3.** Scott Grinnell, "Renewable Energy & Sustainable Design", CENGAGE Learning, USA, 2016.

REFERENCES

- 1. A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design", PHI Learning Private Limited, New Delhi, 2011
- 2. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015.
- **3.** Chetan Singh Solanki, "Solar Photovoltaics : Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011
- **4.** Bradley A. Striebig,Adebayo A.Ogundipe and Maria Papadakis," Engineering Applications in Sustainable Design and Development", Cengage Learning India Private Limited, Delhi, 2016.
- **5.** Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 6. Shobh Nath Singh, 'Non-conventional Energy resources' Pearson Education ,2015.

9

- 3. M.H. Rashid Power Electronics circuits, devices and applications- third edition Prentice Hall of India New Delhi, 2007.
- **4.** Erickson, Robert W. "Fundamentals of Power Electronics". Springer, second edition. 2010.

EE8015 ELECTRIC ENERGY GENERATION, UTILIZATION AND LT Ρ С 0 3 CONSERVATION 3 0

OBJECTIVES:

To impart knowledge on the following Topics

- To study the generation, conservation of electrical power and energy efficient equipments.
- To understand the principle, design of illumination systems and energy efficiency lamps. •
- To study the methods of industrial heating and welding. •
- To understand the electric traction systems and their performance. •

UNIT I **ILLUMINATION**

Importance of lighting – properties of good lighting scheme – laws of illumination – photometry types of lamps - lighting calculations - basic design of illumination schemes for residential, commercial, street lighting, factory lighting and flood lighting - LED lighting and energy efficient lamps.

UNIT II **REFRIGERATION AND AIR CONDITIONING**

Refrigeration-Domestic refrigerator and water coolers - Air-Conditioning-Various types of air-conditioning system and their applications, smart air conditioning units - Energy Efficient motors: Standard motor efficiency, need for efficient motors, Motor life cycle, Direct Savings and payback analysis, efficiency evaluation factor.

HEATING AND WELDING UNIT III

Role of electric heating for industrial applications - resistance heating - induction heating dielectric heating - electric arc furnaces. Brief introduction to electric welding - welding generator, welding transformer and the characteristics.

UNIT IV TRACTION

Merits of electric traction - requirements of electric traction system - supply systems mechanics of train movement - traction motors and control - braking - recent trends in electric traction.

UNIT V DOMESTIC UTILIZATION OF ELECTRICAL ENERGY

Domestic utilization of electrical energy – House wiring. Induction based appliances, Online and OFF line UPS, Batteries - Power quality aspects - nonlinear and domestic loads - Earthing -Domestic, Industrial and Substation.

OUTCOMES:

- To understand the main aspects of generation, utilization and conservation.
- To identify an appropriate method of heating for any particular industrial application.
- To evaluate domestic wiring connection and debug any faults occurred.
- To construct an electric connection for any domestic appliance like refrigerator as well as to design a battery charging circuit for a specific household application.
- To realize the appropriate type of electric supply system as well as to evaluate the

TOTAL: 45 PERIODS

9

9

9

9